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SUMMARY

We present a method to model the propagation of surface waves in Cartesian structures
showing isotropic and anisotropic 3-D heterogeneities. It is assumed that the back-
ground structure is laterally homogeneous and that the heterogeneities act as secondary
sources, producing multiple scattering and coupling between the surface wave modes of
the background structure. No far-field approximation is made, enabling in particular the
heterogeneities to be located in the vicinity of the source or receiver. The heterogeneities
may be strong and extended 3-D bodies or perturbations of layer boundaries.

Several applications are presented, including comparison to an exact solution for a
cylindrical heterogeneity. The multiple-scattering series is shown to converge for strong
heterogeneities of 10 per cent in S-wave velocity over several wavelengths. We analyse
the influence of anisotropy and show in particular that some elastic coefficients, which
are non-zero in mantle structures with crystals oriented in a non-horizontal flow, are
able to distort the surface wave polarizations strongly.

Key words: anisotropy, inhomogeneous media, mode coupling, polarization, scattering,
surface waves.

1 I N T R O D U C T I O N

Classically, surface waves are used in seismology for deter-

mining the Earth’s structure by inversion of their phase and

group velocities, and for calculating source parameters by using

phase and amplitude information. In most cases, very simple

assumptions are made concerning wave propagation, and the

effect of focusing or scattering by the 3-D nature of the Earth is

not accounted for.

Although these assumptions are justified in most cases, some

data present characteristic features that make it necessary to

account for the complex effect of lateral heterogeneity. For

example, Van der Lee (1998) observed important Rayleigh wave

amplitude anomalies in North America that most probably

arise from important near-source scattering. If not accounted

for, this scattering will bias source parameter estimates. Laske

et al. (1994) also showed that polarization anomalies of Rayleigh

waves in the intermediate period range are more complex than

in the long-period range. A careful analysis of their origin is

necessary before they can be used, like the long-period ones, to

improve the resolution of tomographic models.

These two examples illustrate the need to quantify the effect

of different kinds of 3-D structures on surface wave propagation.

They also indicate that a potential source of information lies

in wavefield anomalies, which can become useful if appropriate

data-analysis methods are developed.

The effect of 3-D isotropic and anisotropic heterogeneities

on long-period surface waves has been studied in particular

by Park & Yu (1992) using a free-oscillation formalism. For

surface waves at shorter periods, that is mantle surface waves

from 20 to 60 s period, crustal surface waves and surface waves

in geotechnical applications, this formalism is not well-adapted,

and formalisms based on surface wave modes in a Cartesian

structure are better suited.

Surface wave propagation in Cartesian structures has been

studied more in 2-D than in 3-D structures (see Kennett 1998,

for a recent review). In 3-D structures, their scattering was first

studied extensively by Snieder (1986). His formalism, based

on Born scattering and the far-field approximation, is well-

adapted to study the effect of small heterogeneities that are

located far away from source and receiver, but not to study

the effect of heterogeneities in the vicinity of a receiver, for

example. A more complete method that can cope with the near-

field and larger contrasts in the heterogeneities was developed

by Bostock (1991) and Bostock & Kennett (1992). In this

method, the model is composed of blocks, of possibly complex

shapes, embedded in a reference layered structure. The fact that

the structure inside each block must be laterally homogeneous

in order to support a single set of local modes is the main

limitation of this method. For complex 3-D structures, a large

number of blocks have to be defined and their wavefields must

interact with each other, leading to heavy computations.

Geophys. J. Int. (2001) 146, 332–348

332 # 2001 RAS



A multiple forward scattering formalism was presented by

Friederich et al. (1993). This method can handle general 3-D

structures in a very effective way. Used in combination with an

appropriate representation of the incoming wavefield, it pro-

vides a modern method for inverting teleseismic surface waves

recorded at regional networks for the shear wave structure

under the network (Friederich 1998).

In this paper, we present a very general scheme to syn-

thesize surface waves propagating in 3-D Cartesian structures.

It is based on multiple scattering and can handle 3-D isotropic

and anisotropic structures embedded in a laterally homogeneous

reference structure. It has a number of similarities with the

multiple forward scattering method presented by Friederich

et al. (1993). The main differences are that we focus on ampli-

tude and polarization anomalies, and therefore keep multiple

scattering in all directions. The mode coupling, especially between

Rayleigh and Love waves, is emphasized and we allow for

anisotropic heterogeneities. We show that our expressions satisfy

the boundary conditions at tilted interfaces between layers.

After a presentation of the theory, we compare the results of

the method with those of an exact method in a geometrically

simple situation. The limits of the method are then examined by

using strongly heterogeneous isotropic structures. Finally, the

specific features associated with propagation of surface waves

in anisotropic 3-D structures are examined.

2 T H E O R Y

Our development is based on the same formulation as in

Friederich et al. (1993): the structure is separated into a reference

homogeneous structure and a heterogeneity superimposed on

that structure; the wavefield is expressed as a sum of modes and

we use the notion of potential field to describe the amplitude

and phase of each mode in the horizontal plane. The main

difference from Friederich et al. (1993) is in the way we handle

multiple scattering. In addition, we also analyse the scattering

due to anisotropic heterogeneities.

2.1 Usage of a reference Green’s function

We will first recall some classical results concerning the calcu-

lation of waves scattered by heterogeneities. In a general 3-D

structure, the elastic wave equation is written as

ðÿLjCijklLl ÿ ou2dikÞuk ¼ fi , (1)

where u is the displacement, f the source function, v the

angular frequency, r the density and Cijkl the tensor of elastic

coefficients. The associated boundary conditions are

½ui� ¼ 0 ,

½njCijklLluk� ¼ 0
(2)

at each interface, where n is the normal to the interface and [ ]

means a jump of the enclosed quantity over the interface. At

the free surface, only the second of these two equations applies.

The solution is given in its general form by

uiðxÞ ¼
ð

Gijðx, x0Þfjðx0Þdx0 ,(3)

where Gij (x, xk) is a Green’s function satisfying the same

boundary conditions as u, and the integral is to be taken over

the volume of the source.

Separating the structure into a laterally homogeneous reference

structure and a perturbation, the elastic wave equation (1) can

be written as

ðÿLjðC0
ijklLlÞ ÿ o0u2dikÞuk ¼ÿðÿLjðecijklLlÞ ÿ edou2dikÞuk þ fi ,

(4)

where the elements indexed 0 are related to the reference

structure, whereas cijkl and dr are the perturbations in elastic

coefficients and density, respectively. We insert the parameter

e temporarily, in order to show explicitly which elements are

related to the perturbation.

In addition to introducing heterogeneities in the layers, it

can be desirable to displace the layer boundaries. Writing the

boundary conditions in the perturbed model in a form suit-

able for using the Green’s function in a reference structure

is equivalent to introducing two discontinuities in traction in

the reference model: one at the level h0 of the boundary in the

reference structure,

½n0
j C0

ijklLluk� ¼ ÿ½n0
j ecijklLluk� at z ¼ h0 , (5)

and one at the level h of the boundary in the perturbed model,

½njC
0
ijklLluk� ¼ ÿ½njecijklLluk� at z ¼ h : (6)

These traction discontinuities are equivalent to two sets of

forces localized on the discontinuities,

F0
i ¼ ½n0

j ecijklLluk�dðzÿ h0Þ ,

Fi ¼ ½njecijklLluk�dðzÿ hÞ :
(7)

We can therefore replace the traction discontinuities by the

forces F0 and F, which can be inserted in the source term.

The differential equation on the left-hand side of eq. (4) is the

equation of motion in the reference structure. Having inserted

the forces F0 and F in the source term, the boundary conditions

of the problem are also those of the reference structure (eqs 2).

We can therefore write

uqðxÞ ¼
ð

Gqiðx, x0ÞðLj0 ðecijklðx0ÞLl0 Þ þ edoðx0Þu2dikÞukðx0Þdx0

þ
ð

Gqiðx, x0Þð fiðx0Þ þ F0
i ðx0Þ þ Fiðx0ÞÞdx0 , (8)

where Gqi(x, xk) is the Green’s function in the reference

structure. hjk and hlk denote derivatives with respect to xkj and

xkl respectively.

In each region in between any two interfaces (one interface

may be a layer boundary present in the reference structure

and the other one in the perturbed model), the model para-

meters and the wavefield are continuous and have continuous

derivatives. We can therefore apply Gauss’s theorem in each of

these regions to the first term on the right-hand side of eq. (8).

This results inð
Gqiðx, x0ÞLj0 ðecijklðx0ÞLl0ukðx0ÞÞdx0

¼
ð
ÿðLj0Gqiðx, x0ÞÞðecijklðx0ÞLl0ukðx0ÞÞdx0

þ
ð

S

n0jGqiðx, x0Þecijklðx0ÞLl0ukðx0ÞÞdS0 , (9)
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where Sk represents the region boundaries, i.e. the two inter-

faces, with normal nk oriented outwards. A close examination

of the boundary terms introduced by this application of Gauss’s

theorem reveals that they cancel the interface forces intro-

duced to replace the traction discontinuities in eq. (7). The final

equation for the displacement is therefore

uqðxÞ ¼
ð
ðÿLj0Gqiðx, x0ÞÞðecijklðx0ÞLl0 þ edoðx0Þu2dikÞukðx0Þdx0

þ
ð

Gqiðx, x0Þfiðx0Þdx0 : (10)

This equation satisfies the equation of motion and the boundary

conditions in the perturbed model. Note that there are no

interface terms other than those present in the volume integral,

due to perturbations cijkl and dr related to the displacements of

the boundaries, and that we do not need to resort to a delta-

function representation of the volume perturbation between

old and new boundaries.

2.2 Multiple scattering

So far, no approximations have been made, but u(x) appears

both on the left-hand side and on the right-hand side of eq. (10).

In order to take advantage of the decomposition of the structure

into a reference structure and a perturbation, we also separate

the wavefield into a reference wavefield and a perturbation,

expressed as a series in e:

uðxÞ ¼ uð0ÞðxÞ þ
XN

p¼1

epuð pÞðxÞ : (11)

Inserting this into eq. (10), we obtain for each power of e

uð pÞq ðxÞ ¼
ð
ðÿLj0Gqiðx, x0ÞÞðcijklðx0ÞLl0

þ doðx0Þu2dikÞuð pÿ1Þ
k ðx0Þdx0: (12)

The order 0 term is simply the last term in eq. (10), that is, the

wavefield generated by the source in the reference structure,

uð0Þq ðxÞ ¼
ð

Gqiðx, x0Þfjðx0Þdx0 : (13)

uq
(p) is the scattered wavefield of order p. The obvious advantage

of this formulation is that the Green’s function has to be

calculated only in the reference structure. The basic assumption

is that the nature of the problem is such that the series con-

verges. We note that eq. (10) is a Fredholm integral equation

of the second kind. This kind of equation is well behaved

and usually well suited to a solution in the form of a series

(Hackbusch 1995). Keeping only uq
(1) produces the classical Born

approximation. In the development presented in this paper, we

have kept several orders of scattering and verified the conver-

gence of the series by checking in each case that the wavefield

does not change significantly when adding a new term.

2.3 Modal decomposition and definition of potential

For surface waves in laterally homogeneous structures, the

Green’s function can be written as a sum of modes that pro-

pagate independently from each other. These modes are able to

represent the wavefield that is trapped in the structure, but not

the body waves that propagate at a steep angle and are not

trapped. Lateral heterogeneities may convert energy from surface

waves to body waves and the Green’s function used in the

scattering equations should ideally be complete, that is, be able

to represent the body waves also. Supplementing the classical

surface waves with the radiation modes, such a complete modal

Green’s function exists (Maupin 1996). In theory, the scattering

scheme we present here is therefore not limited to cases without

significant conversion to body waves. In practice, including the

radiation modes increases greatly the dimension of the com-

putation and can be done only in special cases. For example,

the computation made in Sections 3 and 4 with eight classical

modes would require using about 80 modes if radiation modes

were to be included. In the examples presented here, we have

used only classical modes, and the Green’s function can be

written as

Gqiðx, x0Þ ¼
X

m

Zm
q ðzÞgm

i ðx, y, x0Þ , (14)

which we express, as done by Friederich et al. (1993), as an

operator,

Zm
q ðzÞ ¼

1=kmðÿVmðzÞL=LxþW mðzÞL=LyÞ

1=kmðÿW mðzÞL=Lxÿ VmðzÞL=LyÞ

UmðzÞ

0BBB@
1CCCA , (15)

acting on a potential,

gm
i ðx, y, x0Þ ¼ ÿi

8cmumJm
1

Zm
i ðz0ÞH

ð2Þ
0 ðkmRÞ : (16)

Um, Vm and Wm are the three components of the eigenfunction

of mode m. km, cm, um and J1
m are its wavenumber, phase

velocity, group velocity and energy integral, respectively. x, y and

z denote the three components of x in a right-handed coordi-

nate system where x and y are the two horizontal directions and

z points downwards. R is the distance in the horizontal plane

between x and xk, and H0
(2) is the Hankel function of second

kind and order 0. In the far-field approximation, the operator

Zi
m(z) simply reduces to a vector containing the eigenfunction

of the mode and some p/2 phase factors. In isotropic structures,

Um and Vm are respectively the vertical and horizontal com-

ponents of the Rayleigh wave eigenfunctions, and Wm the eigen-

functions of the Love waves. We note that the operator Z is

also present in the expression of the potential, but acting on the

source side. In the far-field approximation, the potential can be

viewed as simply representing the amplitude and the phase of

mode n in the horizontal plane.

Inserting the modal decomposition (14) into eq. (12), we

can also write the scattered wavefield of order p as a sum of

modes,

u
ð pÞ
i ðxÞ ¼

X
m

Zm
i ðzÞ’ð pÞm ðx, yÞ : (17)

Wm
(p)(x, y) is the potential of mode m at scattering order p.

Using a similar decomposition for the wavefield scattered

at order px1, and inserting in the scattering equation (12), we

obtain a recursive expression for calculating the potentials of
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the different modes at the different scattering orders,

’ð pÞm ðx, yÞ ¼
ð
ðÿLj0g

m
i ðx, y; x0ÞÞðcijklðx0ÞLl0 þ doðx0Þu2dikÞ

|
X

n

Zn
kðz0Þ’ð pÿ1Þ

n ðx0, y0Þdx0 : (18)

The advantage of the modal decomposition is that we can

separate this volume integral into a combination of a surface

and a vertical integral,

’ð pÞm ðx, yÞ ¼
X

n

ð
Kmnðx, y; x0, y0Þ’ð pÿ1Þ

n ðx0, y0Þdx0dy0 , (19)

with

Kmnðx, y; x0, y0Þ ¼
ð
ðÿLj0g

m
i ðx, y; x0ÞÞ

|ðcijklðx0ÞLl0 þ doðx0Þu2dikÞZn
kðz0Þdz0 : (20)

Note that Kmn(x, y; xk, yk) is an operator, in the sense that it

contains derivatives to be applied to the potential Wn
(px1)(xk, yk).

It is independent of the scattering order, and thereby needs to

be calculated only once when we iterate for multiple scattering.

In the two next sections, we will analyse the structure of these

two integrals and detail the procedure we have followed to

compute them.

2.4 Structure of the coupling coefficient

The coupling coefficient Kmn(x, y; xk, yk) expresses how a

heterogeneity located at (xk, yk) transfers energy from mode n

to mode m, and how this energy is observed at (x, y). In the

general anisotropic case, we have 21 independent combinations

of indexes for which the coupling has to be calculated. If the

reference structure is isotropic, the potential of the Green’s

function gi
m(x, y; xk) and the form of the Zk

n operators are given

by eqs (16) and (15) respectively. Inserting them into eq. (20)

and developing some arithmetic, one can obtain the detailed

expression of the coupling of Love and Rayleigh modes by an

anisotropic heterogeneity. Developing the differentiation in

(xhjkgi
m(x, y; xk)) leads to first- and second-order derivatives

of the Hankel function present in gi
m(x, y; xk). Applying the

operators (Zk
n(zk)) and (hlkZk

n(zk)) to the potential Wn
( px1)(xk, yk)

leads to terms in the potential and in its first- and second-order

derivatives with respect to the horizontal coordinates. The

coupling therefore has the following general structure:

KðaÞmn ðx, y; x0, y0Þ ¼ ÿi

8cmumJm
1

X5

b¼1

HbðkmR, �Þ km

kn

ð
CðabÞ

mn ðx0Þdz0 :

(21)

The index a can take six different values and indicates whether

the element K(a)
mn(x, y; xk, yk) is to be multiplied by the potential

of mode n or by one of its first- or second-order horizontal

derivatives. Hb(kmR, w) is one of the five functions H0
(2)(kmR),

H1
(2)(kmR) cos(w), H1

(2)(kmR) sin(w), H2
(2)(kmR) cos(2w) and

H2
(2)(kmR) sin(2w), as indicated in Tables 1–4. w is the azimuth

of (x, y) as seen from (xk, yk), counted positively clockwise from

the x-direction. These functions express the azimuthal pattern

and the propagation of the wavefield scattered to mode m by

each single heterogeneity. The higher-order Hankel functions

originate from the differentiation of the Hankel function of

order 0, and we have used the following relation to reduce some

expressions:

2

z
H
ð2Þ
1 ðzÞ ¼ H

ð2Þ
0 ðzÞ ÿH

ð2Þ
2 ðzÞ : (22)

The elements Cmn
(ab)(zk) are depth integrals of combinations of

elastic coefficients, density perturbations and eigenfunctions

of modes m and n. Their expressions are given in Tables 1–4.

They express how the heterogeneity transfers energy from

mode n to m at (xk, yk).
As an example, let us write, in the potential of mode

m scattered at order p, the term which varies in cos(2w), for

Rayleigh–Rayleigh coupling. Inserting elements in the first

Table 1. Expressions for Rayleigh to Rayleigh coupling. Ũn=Unx(1/kn)(hVn /hzk) and similarly for Ũm. The terms that are not zero in the isotropic

case are shown in boxes.

H2
(2)(kmR) cos(2w) H2

(2)(kmR) sin(2w) H1
(2)(kmR) cos(w) H1

(2)(kmR) sin(w) H0
(2)(kmR)

h2
xk2 Vm

1
2 (c1122xc1111)Vn xVmc1112Vn Ũmc1113Vn Ũmc1123Vn Vm

1
2 (c1122+c1111)Vn

+ 1
km

LUm

Lz0 c1133Vn

h2
xkyk Vm(c2212xc1112)Vn x2Vmc1212Vn 2Ũmc1213Vn 2Ũmc1223Vn Vm(c2212+c1112)Vn

+ 2
km

LUm

Lz0 c3312Vn

h2
yk2 Vm

1
2

(c2222xc1122)Vn xVmc2212Vn Ũmc2213Vn Ũmc2223Vn Vm
1
2

(c2222+c1122)Vn

+ 1
km

LUm

Lz0 c2233Vn

hxk Vm
1
2

(c1113xc2213)Ũnkn Vmc1213Ũnkn xŨmc1313Ũnkn

+drv2 1
km

VmVn

xŨmc1323Ũnkn xVm
1
2

(c1113+c2213)Ũnkn

x 1
km

LUm

Lz0 c3313
~Unkn

hyk Vm
1
2

(c1123xc2223)Ũnkn Vmc1223Ũnkn xŨmc1323Ũnkn xŨmc2323Ũnkn

+drv2 1
km

VmVn

xVm
1
2

(c1123+c2223)Ũnkn

x 1
km

LUm

Lz0 c3323
~Unkn

– Vm
1
2

(c1133xc2233) LUn

Lz0 kn Vmc1233
LUn

Lz0 kn xŨmc3313
LUn

Lz0 kn xŨmc3323
LUn

Lz0 kn xVm
1
2

(c1133+c2233) LUn

Lz0 kn

x 1
km

LUm

Lz0 c3333
LUn

Lz0 kn

+drv2 kn

km
UmUn

3-D scattering of surface waves 335

# 2001 RAS, GJI 146, 332–348



column of Table 1 into eqs (19) and (21), we obtain

’ð pÞm,2�,RRðx, yÞ

¼ ÿi

8cmumJm
1

ð
S

H
ð2Þ
2 ðkmRÞ cosð2�Þ

X
n

km

kn

|

�ð
Vm

1

2
ðc1122 ÿ c1111ÞVndz0

L2’ð pÿ1Þ
n ðx0, y0Þ

L2
x02

þ
ð

Vmðc2212 ÿ c1112ÞVndz0
L2’ð pÿ1Þ

n ðx0, y0Þ
L2

x0y0

þ
ð

Vm
1

2
ðc2222 ÿ c1122ÞVndz0

L2’ð pÿ1Þ
n ðx0, y0Þ

L2
y02

þ
ð

Vm
1

2
ðc1113 ÿ c2213Þ ~Unkndz0

L’ð pÿ1Þ
n ðx0, y0Þ

Lx0

þ
ð

Vm
1

2
ðc1123 ÿ c2223Þ ~Unkndz0

L’ð pÿ1Þ
n ðx0, y0Þ

Ly0

þ
ð

Vm
1

2
ðc1133 ÿ c2233Þ

LUn

Lz0
kndz0’ð pÿ1Þ

n ðx0, y0Þ
�

dx0dy0:

(23)

The elements that do not reduce to zero when the hetero-

geneity is isotropic are shown in boxes in Tables 1–4. Our results

reduce to those obtained by Friederich et al. (1993) in the case

of isotropic heterogeneities and Rayleigh–Rayleigh coupling.

Replacing the Hankel functions by their far-field approxi-

mations, we also recover the coupling expressions given by

Snieder (1986) for isotropic heterogeneities and single scattering.

Anisotropy introduces a large number of additional terms in

comparison with isotropic heterogeneities. We note in particular

that the symmetry in the coupling between Love and Rayleigh

modes is broken by the anisotropy.

In order to analyse the structure of the coupling, it is useful

to define a principal direction of propagation in the structure.

In the examples presented in the next sections, the source of the

displacement is a plane wave incident on the heterogeneous

structure in the x-direction. w=0 therefore defines the forward

direction. The reference wavefield varies only in the x-direction

and the terms that contain partial derivatives of the wavefield

in the yk-direction are zero at the first scattering order. For

isotropic heterogeneities, we obtain the same results as Snieder

(1986) concerning the azimuthal variation of the scattering:

Rayleigh to Love and Love to Rayleigh coupling have an

azimuthal dependence in sin(w) and sin(2w) only, producing

no coupling in the forward direction. Unlike in the isotropic

case, Love to Rayleigh and Rayleigh to Love coupling in the

anisotropic model have elements in cos (2w) in cos (w), and

without dependence in w. They are therefore able to produce

mode coupling in the forward direction. In the case of large

heterogeneities, forward scattering becomes dominant, and these

elements are able to produce significant polarization anomalies,

as we will see in the examples presented in Section 4.

Table 2. Expressions for Love to Love coupling.

H2
(2)(kmR) cos(2w) H2

(2)(kmR) sin(2w) H1
(2)(kmR) cos(w) H1

(2)(kmR) sin(w) H0
(2)(kmR)

h2
xk2 xWmc1212Wn Wm

1
2

(c1112xc2212)Wn x 1
km

LWm

Lz0 c1223Wn
1

km

LWm

Lz0 c1213Wn –

h2
xkyk Wm(c1112xc2212)Wn Wm

1
2

(xc1111xc2222+2c1122)Wn
1

km

LWm

Lz0 (c1123xc2223)Wn
1

km

LWm

Lz0 (c2213xc1113)Wn –

h2
yk2 Wmc1212Wn Wm

1
2

(c2212xc1112)Wn
1

km

LWm

Lz0 c1223Wn x 1
km

LWm

Lz0 c1213Wn –

hxk xWmc1223
LWn

Lz0 Wm
1
2

(c1123xc2223) LWn

Lz0 x 1
km

LWm

Lz0 c2323
LWn

Lz0

+drv2 1
km

WmWn

1
km

LWm

Lz0 c1323
LWn

Lz0 –

hyk Wmc1213
LWn

Lz0 Wm
1
2

(c2213xc1113) LWn

Lz0
1

km

LWm

Lz0 c1323
LWn

Lz0 x 1
km

LWm

Lz0 c1313
LWn

Lz0

+drv2 1
km

WmWn

–

Table 3. Expressions for Rayleigh to Love coupling.

H2
(2)(kmR) cos(2w) H2

(2)(kmR) sin(2w) H1
(2)(kmR) cos(w) H1

(2)(kmR) sin(w) H0
(2)(kmR)

h2
xk2 xWmc1112Vn Wm

1
2 (c1111xc1122)Vn x 1

km

LWm

Lz0 c1123Vn
1

km

LWm

Lz0 c1113Vn –

h2
xkyk x2Wmc1212Vn Wm(c1112xc2212)Vn x 2
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2.5 Differentiation and integration in the horizontal
plane

Eq. (23) and similar equations for other mode combinations

and azimuthal variations contain horizontal derivatives of

the potentials and an integration in the horizontal plane.

In this section, we give some details on the procedures we

have followed to perform these two operations in a stable and

efficient way.

In the examples we have analysed, the incoming wavefield

is a plane wave propagating along the x-axis. The potential of

each mode of the reference wavefield can therefore be expressed

as a constant amplitude and a simple phase variation,

’ð0Þm ðx, yÞ ¼ Am expðÿikmxÞ : (24)

For higher orders of scattering, the horizontal variations of the

wavefield are of course much more complicated, but for large-

scale heterogeneities, forward scattering is expected to dominate

(Friederich et al. 1993). Removing the expected dominant phase

from the potential of each mode by writing

’ð pÞm ðx, yÞ ¼ $ð pÞm ðx, yÞ expðÿikmxÞ (25)

enables us to work with the quantity Jm
(p)(x, y), which is expected

to vary more smoothly than Wm
( p)(x, y). It is therefore possible to

evaluate and differentiate it numerically with a smaller number

of gridpoints. In order to perform the numerical differentiations,

we have used simple low-order schemes.

The total scattered wavefield is a sum of the wavefields

scattered by the heterogeneities distributed in the total structure.

This sum is expressed by the surface integral in eq. (23). It

contains Hankel functions and potentials that oscillate rapidly.

As we have just seen, it is possible to reduce the oscillations

of the potential by using Jm
( p)(x, y) instead of Wm

( p)(x, y). The

Hankel functions can similarly be decomposed into a rapidly

varying phase and a more smoothly varying amplitude,

Hð2Þl ðkmRÞ ¼ ~Hð2Þl ðkmRÞ expðÿikmRÞ : (26)

Inserting this into, for example, eq. (23), we obtain

$ð pÞm,2�,RRðx, yÞ ¼ expðikmxÞ ÿi

8cmumJm
1

ð
S

~H
ð2Þ
2 ðkmRÞ

| expðÿikmRÞ expðÿiknx0Þ cosð2�Þ

|
X

n

km

kn

�ð
Vm

1

2
ðc1122 ÿ c1111Þ

|Vndz0ðÿk2
n ÿ 2iknLx0 þ L2

x02 Þ

|$ð pÿ1Þ
n ðx0, y0Þ þ . . .

�
dx0dy0 , (27)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxÿ x0Þ2 þ ðyÿ y0Þ2

p
. Note that h2

xk2 has been

transformed into a slightly longer expression. Except for its two

exponential functions, the integrand of the surface integral is

expected to be relatively smooth. This kind of integral is well

suited to be integrated by the Filon integration scheme (Fraser

& Gettrust 1984). We give more details on this integration in

Appendix A.

The second difficulty associated with the surface integral is

related to the singularity of the Hankel functions at R=0. We

show in Appendix B that all the integrals involved in eq. (21)

are integrable and can be performed analytically close to the

origin in R.

This completes the different numerical elements we need in

order to be able to compute the coupling operators in eq. (20),

the potentials in eq. (19) and finally the wavefields in eqs (17)

and (11). In the numerical examples presented below, the

eigenfunctions in the reference structures were calculated with

programs provided by Saito (1988).

3 I S O T R O P I C H E T E R O G E N E I T I E S

We now present results of the coupling method in models

with isotropic heterogeneities. We first validate the method by

comparing our results for a simple crustal model that has a

cylindrical heterogeneity with an exact solution derived by Stange

Table 4. Expressions for Love to Rayleigh coupling.
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& Friederich (1992). We then analyse how Rayleigh and Love

wavefields at 25 s period are deformed when they propagate

through some simple geometrical mantle heterogeneities.

3.1 Validation of the method

In order to check the validity of our approach, we first calculate

the wavefield produced when a Rayleigh wave at a period of

2p s, with a wavelength of about 18 km, encounters a cylindrical

heterogeneity embedded in a simple crustal structure. We use

the same model as Friederich et al. (1993), that is, a 5.7 per cent

variation in S-wave velocity over the whole depth of the crust

within a vertical cylinder of 36 km diameter. We use also the

same discretization of the model, with a grid step of 2.8 km,

that is, about six gridpoints per wavelength. For this kind of

model, Stange & Friederich (1992) derived an exact solution

based on a decomposition of the wavefield into propagating

and non-propagating modes. This solution can be used to check

the validity of approximate methods.

In order to represent the wavefield, we use all the modes that

propagate in the structure, that is, three Rayleigh modes and

three Love modes. Unlike the exact solution, energy scattered

at high incidence angles and propagating in the mantle is not

accounted for in our results.

In Fig. 1, we present the amplitude of the vertical wavefield

at four different iterations, each iteration representing the

addition of one order of scattering (i.e. N varying from 1 to 4

in eq. 11). At the first iteration, we obtain the wavefield in the

Born approximation, which consists of the incoming field and

the single-scattered field. We notice that the wavefield varies very

little after the second iteration, but that there is a significant

variation between the first and the second iterations, especially

in the amplitude on the lateral heterogeneity itself. The Rayleigh

wave fundamental mode accounts for 95 per cent of the total

wavefield on the vertical component, justifying the assumption

made by Friederich et al. (1993) that mode coupling was not

very important in that case. Comparing with the exact solution

given in Fig. 2 of Friederich et al. (1993), we find a very good

agreement. The largest difference is situated on the hetero-

geneous cylinder itself and can be evaluated at 0.03, that is,

7 per cent of the peak-to-peak amplitude variation over the

whole figure. The difference is smaller than 1 per cent in most

of the figure.

3.2 Scattering of Rayleigh waves

3.2.1 Amplitude in model 1

In Fig. 2, we show the vertical wavefield resulting from a

Rayleigh wave fundamental mode with period 25 s, corre-

sponding to nearly 100 km wavelength, propagating through

an oceanic model showing a heterogeneity of 10 per cent in

S-wave velocity in the upper mantle. The relative P-wave velocity

variation is the same as that in the S-wave velocity, and the

relative density variation is 4 per cent. The heterogeneity in this

model, called model 1, is a vertical body extending from 10 to

100 km depth with a hexagonal section of about 400 km width,

as shown in Fig. 2. The geometry has been chosen in order to

have vertical boundaries parallel, oblique and perpendicular

to the incoming wavefield. The model and the wavefield are

sampled every 20 km, ensuring five samples per wavelength.
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Figure 1. Map in the horizontal plane of the total vertical wavefield at the free surface at iterations 1 to 4 for a Rayleigh wave fundamental mode

with period 2p incident on a crustal model with a cylindrical heterogeneity of 5.7 per cent. The black circle indicates the position of the heterogeneity.

The Rayleigh wave is incident from the left of the figure, as indicated by the arrows. The amplitude is normalized with respect to the amplitude of the

vertical component in the reference laterally homogeneous structure. This figure is to be compared with Fig. 2 of Friederich et al. (1993).
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The wavefield is decomposed on the first four Rayleigh and the

first four Love wave modes of the reference structure. The

coupling to the higher modes is not very strong and similar

results are obtained with, for example, three Rayleigh and three

Love modes.

The phase velocity of the Rayleigh wave fundamental mode

is 7 per cent higher in the heterogeneous structure than in

the reference structure. Propagation through the 400 km wide

heterogeneity will therefore modify the phase of the wavefield

by about p /2. In the method presented here, any phase differ-

ence must be accounted for by the scattering series, and this

is equivalent to representing exp(iw) by its power series. For

w=p/2, the amplitude of the power series of exp(iw) at the first

and second orders reaches values of 1.8 and 1.6, respectively.

Including power 3, the amplitude decreases much closer to 1.

The series converges within 1 per cent of exp(iw) in amplitude

and in phase using up to power 5, which corresponds to iteration

five in the scattering series.

The behaviour of the power series corresponds very well to

the behaviour of the scattering series that we observe in Fig. 2,

with large amplitudes at the first two iterations, decreasing

to smaller values and converging from iteration 3. Iteration 1

corresponds to the Born approximation, which is known to

lead to amplitudes that are too large for positive as well as for

negative heterogeneities (see e.g. Friederich et al. 1993).

Amplitude variations are very small after iteration 5.

Defocusing created by the positive anomaly leads to an ampli-

tude decrease of up to 40 per cent behind the heterogeneity,

associated with larger amplitudes in two zones on both sides

of the low-amplitude region, corresponding to regions where

energy has been deflected.

3.2.2 Amplitude in model 2

The vertical wavefield in a model that we call model 2, similar

to the one presented above but with a negative heterogeneity

of x10 per cent, is shown in Fig. 3 at iterations 1 and 6. At

iteration 1, the amplification of the wavefield is similar to that in

model 1, reflecting the fact that it is only an artefact related to

the phase variation. The amplitude converges to proper values

from iteration 5, and we show here the results at iteration 6.

We observe a strong focusing in a small region behind the

heterogeneity surrounded by two shadow zones showing low

amplitudes. Although of opposite signs, the orders of magni-

tude of the amplitude variations in models 1 and 2 are similar.

The symmetry in the behaviour of the amplitude at high

iteration number, as opposed to the similar patterns at the first

iteration, is a good indication that the series converge to the

correct wavefields and are not dominated at large iteration

number by the pattern related to the phase variation. It appears

that the phase variation is a key factor in controlling the

number of iterations necessary to reach convergence. The choice

of a correct reference model is therefore crucial for the viability

of the method.

3.2.3 Phase variations

The phase delays at iteration 6 are shown for models 1 and 2

in Fig. 4. The order of magnitude corresponds well to that

evaluated from the value of the phase velocity in the hetero-

geneity. For the negative anomaly, the phase delay is slightly

larger just behind the anomaly.
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Figure 2. Map in the horizontal plane of the total vertical wavefield at the water bottom after iterations 1 to 9 for a Rayleigh wave fundamental mode

with period 25 s incident on model 1 with a heterogeneity of 10 per cent in the lithosphere. The hexagon indicates the position of the heterogeneity. The

Rayleigh wave is incident from the left of the figure, as indicated by the arrows. The amplitude is normalized with respect to the amplitude of the

vertical component in the laterally homogeneous reference structure. Note that the scaling is different for the first three and the last six iterations.
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3.2.4 Mode coupling

The total field presented in the previous figures is a sum of

eight modes, but the contribution from the Rayleigh wave

fundamental mode is clearly dominant.

For the vertical component, which is less affected by coupling,

the fundamental mode accounts for 90 per cent of the total

wavefield. The overtones of the Rayleigh wave are generated

by coupling inside the heterogeneity and have non-zero ampli-

tude behind the heterogeneity. The amplitude of the first

overtone is about 5 per cent of the total wavefield, whereas the

second and third overtones account for about 3 and 2 per cent,

respectively.

The transverse component is the one most affected by

coupling. In Fig. 5, we present the amplitude of the transverse

component at iteration 6 in model 1. The total transverse wave-

field is represented, as well as the contributions from the Rayleigh

wave fundamental mode alone and from the four Love wave

modes together. The two dominant features of the transverse

wavefield are large amplitudes at the far corners of the hetero-

geneity, which are mainly related to the Rayleigh wave funda-

mental mode propagating away from the x-direction, and a

zone of large amplitude at the front of the structure, contri-

buted by the Love waves. This last feature is associated with

Love waves trapped and partly reflected at the front of the

heterogeneity, which is here very strong and very sharp. It also

produces large amplitudes associated with boundary effects

that contaminate the Love wavefield at x=0. This feature is not

stable and grows with iteration number, but disappears from

smoother models.
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Figure 4. Map of the phase differences between the total vertical wavefields and the reference vertical wavefield at iteration 6. (a) Model 1;

(b) model 2. The scale is in radians. The incident wave is a Rayleigh wave fundamental mode.
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Figure 5. Transverse component at iteration 6 in model 1 for an incident Rayleigh wave fundamental mode. The total wavefield is shown, as well as

the contribution from the Rayleigh wave fundamental mode and the four Love wave modes.
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3.2.5 Polarization in the horizontal plane

In order to analyse the wavefield in more detail, we present in

Fig. 6 the polarization of the wavefield in the horizontal plane

in the region where the transverse components have the largest

amplitude. The defocusing created by the heterogeneity is clear

in Fig. 6. In most places, the polarization in the horizontal

plane is rather linear, with deviations from the x-direction

simply associated with deviations of the propagation direction

of the Rayleigh wave fundamental mode. The polarization has

its largest ellipticity inside or close to the heterogeneity. In some

places, the transverse component reaches 30 per cent of the

horizontal component, but in most of the structure it is below

10 per cent.

3.2.6 Smooth models

The models we have used up to now show sharp boundaries

between the reference structure and the heterogeneity, the total

variation occurring over a horizontal distance of 20 km. In

order to analyse the behaviour of the wavefield in smoother

structures, we present the results in models that are 2-D low-

pass filtered versions of the previous models in the horizontal

plane, with a cut-off wavelength of 300 km.

The resulting wavefields are basically filtered versions of

the wavefields propagating in the unfiltered models. As an

example, the transverse component at iteration 6 of the wave-

field in the model with a positive 10 per cent anomaly is shown

in Fig. 7. The amplitude of the trapped Love waves is strongly

diminished, but the large amplitude at the far corners of the

heterogeneity are still present, similar in magnitude to those in

Fig. 5.

3.3 Scattering of Love waves

The behaviour of the Love wave fundamental mode is some-

what different from the behaviour of the Rayleigh wave funda-

mental mode when it propagates through the heterogeneous

structures described in the previous sections. The reason is

that increasing the S-wave velocity of the reference structure by

10 per cent between Moho depth and 100 km depth, the phase

velocity of the Rayleigh wave fundamental mode is modified by

7 per cent, but not its eigenfunction. On the other hand, the

phase velocity of the Love wave fundamental mode increases

by only 2 per cent, but its eigenfunction is strongly modified.

Whereas the energy is evenly distributed between the surface

and 200 km depth in the reference structure, the 10 per cent

velocity increase in the lid produces a low-velocity zone below,

where energy becomes strongly trapped. This results in very

different local eigenfunctions in the reference structure and in

the heterogeneity, which in turn produces strong reflections

and mode coupling at their boundary.

In the models with a sharp boundary between the hetero-

geneity and the reference structure, we observe strong reflections

of the Love wave fundamental mode when it hits the hetero-

geneity. These reflections dominate the wavefield from iteration 3,

and increase in amplitude with iteration number. The way we

deal with phases in the algorithm (see eq. 25) is convenient for

sampling efficiently wavefields propagating forwards in the

x-direction, but not for reflected wavefields. In cases with large

reflected wavefields, it would be more appropriate to integrate

directly the amplitudes Wm
( p) and not the phase-corrected Jm

( p).

In the present case, the sampling every 20 km is too sparse for a

correct representation of the reflected wavefields.

In the models that are low-pass filtered with a cut-off wave-

length of 300 km, the reflected wavefields are much smaller

and the wavefields converge. We show in Fig. 8 the transverse

component of the wavefield at iterations 1 and 9 in the model

with a positive heterogeneity. Convergence is not reached before

iteration 9 due to oscillations in the amplitude of the funda-

mental mode of the Love wave. We observe large amplitudes

at iteration 1, changing to low amplitudes behind the hetero-

geneity at iteration 9. Small reflections are still present, giving

the characteristic oscillating pattern in front of the hetero-

geneity. The defocusing behind the heterogeneity is stronger

than in the case of the Rayleigh wave fundamental mode. The

total wavefield is actually a destructive interference between
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Figure 6. Close-up showing the polarization in the horizontal plane

at iteration 6 for an incident Rayleigh wave fundamental mode. The

particle motion is shown every four nodes of the model.
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the fundamental mode, which has an amplitude relative to the

reference wavefield of about 0.8, and the three overtones of

the Love wave, which have maxima amplitudes of 0.8, 0.3

and 0.1. The overtones dominate in a 300 km wide zone at the

rear of the heterogeneity, leading in this region to polarities

of the Love wavefield opposite to the polarity one would obtain

in the reference model. The coupling to Rayleigh waves is

moderate and produces a vertical wavefield of about 10 per cent

of the transverse one.

In the case of a negative low-pass-filtered heterogeneity,

mode coupling is also a dominant characteristic of the wave-

field. We show in Fig. 9 the transverse component of the total

wavefield, the contribution from the Love wave fundamental

mode and the sum of the contributions from the three Love

wave overtones. We observe a strong focusing behind the hetero-

geneity in the total wavefield, but we note that most of the energy

is on overtones and not on the Love wave fundamental mode,

which shows an amplitude low behind the heterogeneity.

The polarization in the horizontal plane is shown in Fig. 10.

The strong focusing is also clear in this figure. Locally, the

polarization can become an important radial component, but

the polarization remains basically transverse in most of the

structure.

4 A N I S O T R O P I C H E T E R O G E N E I T I E S

We now examine the influence of anisotropic heterogeneities

on Rayleigh and Love wavefields. For that purpose, we first

analyse the effect of the 21 elastic coefficients individually.

Although no realistic material has only one elastic coefficient

deviating from isotropy, and it is unlikely that we will ever

be able to constrain the 21 elastic coefficients in the Earth, we

choose to analyse the wavefield perturbations caused by the 21

coefficients individually in order to obtain a comprehensive

overview of the possible effects of anisotropy. By being able
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Figure 8. Transverse component of the total wavefield at iterations 1 and 9 for a Love wave fundamental mode incident in a low-passed model with a

heterogeneity of 10 per cent.
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mode in a low-passed model with a heterogeneity of x10 per cent.
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the fundamental mode, which has an amplitude relative to the

reference wavefield of about 0.8, and the three overtones of

the Love wave, which have maxima amplitudes of 0.8, 0.3

and 0.1. The overtones dominate in a 300 km wide zone at the

rear of the heterogeneity, leading in this region to polarities

of the Love wavefield opposite to the polarity one would obtain

in the reference model. The coupling to Rayleigh waves is

moderate and produces a vertical wavefield of about 10 per cent

of the transverse one.

In the case of a negative low-pass-filtered heterogeneity,

mode coupling is also a dominant characteristic of the wave-

field. We show in Fig. 9 the transverse component of the total

wavefield, the contribution from the Love wave fundamental

mode and the sum of the contributions from the three Love

wave overtones. We observe a strong focusing behind the hetero-

geneity in the total wavefield, but we note that most of the energy

is on overtones and not on the Love wave fundamental mode,

which shows an amplitude low behind the heterogeneity.

The polarization in the horizontal plane is shown in Fig. 10.

The strong focusing is also clear in this figure. Locally, the

polarization can become an important radial component, but

the polarization remains basically transverse in most of the

structure.

4 A N I S O T R O P I C H E T E R O G E N E I T I E S

We now examine the influence of anisotropic heterogeneities

on Rayleigh and Love wavefields. For that purpose, we first

analyse the effect of the 21 elastic coefficients individually.

Although no realistic material has only one elastic coefficient

deviating from isotropy, and it is unlikely that we will ever

be able to constrain the 21 elastic coefficients in the Earth, we

choose to analyse the wavefield perturbations caused by the 21

coefficients individually in order to obtain a comprehensive

overview of the possible effects of anisotropy. By being able
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to single out which coefficients are able to produce wave-

fields characteristic of anisotropic structures, the effect of any

realistic anisotropic structure can then be assessed by a simple

examination of the value of a few of its elastic coefficients in the

coordinate system defined by the wave propagation direction.

At the end of this section, we study the wavefields in simple

models containing oriented mantle minerals.

4.1 Individual elastic coefficients

We use in this case a very simple geometrical model where the

heterogeneity is a cube extending from 10 to 200 km depth over

a 600 by 600 km square in the horizontal plane. In this region,

one of the elastic coefficients is modified by 10 GPa, which is

of the order of magnitude of the anisotropy in several mineral

elastic tensors (see e.g. Babuska & Cara 1991). A similar variation

in the Lamé coefficient m would correspond to an S-wave velocity

variation of 5.8 per cent. However, since we modify only one

element of the elastic tensor at a time, it actually corresponds to

a smaller heterogeneity. The reference structure is the same as in

the previous section. The model is sampled every 20 km and we

also use four Rayleigh modes and four Love modes to represent

the wavefield.

We calculate the wavefields up to iteration 4, but in all cases

except for C1312, convergence is reached with two iterations and

the wavefield at the first iteration gives a very good approxi-

mation to the total wavefield. This means that the features we

observe can be predicted easily by examination of Tables 1–4,

taking into account that the incoming wavefield does not vary

in the y-direction. Perturbation of an elastic coefficient that is

involved only in coupling terms containing y-derivatives of

the wavefield does not perturb the wavefield. This is the case for

example for C2223 for an incident Rayleigh wave, and for C1313

for an incident Love wave. A number of other elastic coeffi-

cients couple Rayleigh modes together, Love modes together,

or couple Rayleigh and Love modes with a sine function in the

azimuthal variation. All these coefficients modify the wave-

fields in a similar fashion to isotropic heterogeneities, and we

will not analyse them in detail here.

The elastic coefficients that produce wavefield perturbations

characteristic of anisotropy are those that couple Love and

Rayleigh waves in a term with no azimuthal variation or with a

variation in cosine. In that case, we have coupling between

Love and Rayleigh waves in the forward direction, a feature

that does not exist in isotropic structures. When propagating

through the anisotropic structure, some signal builds up on the

transverse components for incident Rayleigh waves, and some

radial and vertical components build up for incident Love

waves.

These different coefficients modify the wavefield in different

ways depending on the phase relation between the incoming

and the scattered waves. For small coupling, the phase relation

is such that the polarization in the horizontal plane either

remains linear, but at an angle with respect to the radial or

transverse direction, or becomes elliptic. For example, C1112,

C2313 and C3312 couple Rayleigh to Love waves in such a way

that their two horizontal components are mostly in-phase. This

produces a linear polarization in the horizontal plane as shown

in Fig. 11 for C3312 and an incident Rayleigh wave fundamental

mode. The transverse component, which is mostly confined to

the heterogeneity, reaches 25 per cent of the radial component

and produces a clockwise deviation of the polarization in

the horizontal plane. The same C3312 coefficient produces a

stronger and more complex polarization anomaly on Love

waves, as shown in Fig. 12. In that case, the initially transverse

polarization first becomes strongly elliptic inside the aniso-

tropic region and then returns to linearity at the rear of the

structure, but with a significant radial component. The ampli-

tude ratio between the radial and transverse components

reaches 60 per cent in that case, of which 75 per cent is on the

Rayleigh wave fundamental mode.
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Figure 11. The same as Fig. 6 for an incident Rayleigh wave funda-

mental mode in a model with a perturbation of C3312 by 10 GPa in the

area indicated by the black square. Iteration 4 is shown.
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Figure 12. The same as Fig. 11 for an incident Love wave fundamental

mode.
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Except for C1312, which we will discuss separately, the other

coefficients produce smaller polarization anomalies than C3312.

10 GPa perturbations on C1112 and C3213 produce polarization

anomalies very similar in shape to those produced by C3312, but

with smaller amplitudes: the maximum amplitude ratios reach

12 and 23 per cent respectively for an incoming Rayleigh wave

fundamental mode, and 40 and 15 per cent respectively for an

incoming Love wave fundamental mode.

C1123 and C3323 couple the waves in such a way that an

incoming Rayleigh wave gets an elliptic polarization in the

horizontal plane, but the transverse to radial amplitude ratio

remains small, reaching only 5 and 6 per cent respectively. They

produce radial components of only 4 per cent for an incoming

Love wave. C2223 and C2221 also produce coupling from Love

to Rayleigh waves in the forward direction, but in two terms in

cos(2w) and 1 that cancel each other at first order. The resulting

wavefield perturbation is not significant.

The main contribution to the polarization anomaly of a Love

wave fundamental mode is usually on the Rayleigh wave funda-

mental mode or on the first Rayleigh wave overtone. In all the

cases that we have examined, the truncation to four Rayleigh

modes gives satisfactory results. Similarly, we have verified that

four Love waves are sufficient to represent the polarization

anomalies for an incident Rayleigh wave fundamental mode.

The largest amplitude is usually on the fundamental mode or

first overtone of the Love wave in that case.

4.1.1 C1312

The elastic coefficient C1312 appears to be the most effective one

to couple Love and Rayleigh waves together. The horizontal

polarization of the wavefield for an incident Rayleigh wave in a

model with a 10 GPa perturbation in C1312 is shown in Fig. 13,

and the wavefield for an incident Love wave is shown in

Fig. 14. In both cases, we observe a complex wavefield with a

generalized polarization varying from radial to transverse and

elliptic. Convergence is reached more slowly with this elastic

coefficient than with the other ones. The wavefields presented

in Figs 12 and 13 include nine orders of scattering, but six

orders give very similar results.

A 5 GPa perturbation of C1312 gives somewhat simpler

wavefields, but the transverse component still reaches 50 per

cent of the radial component for an incident Rayleigh wave. For

an incident Love wave, the radial component still dominates

the radial component locally. In both cases, the polarizations

are strongly elliptic.

4.2 Oriented pyrolite models

No material is such that deviation from isotropy is on only one

elastic coefficient, and we will now examine the polarizations in

physically realistic models of anisotropy. However, the analysis

of the influence of the different elastic coefficients gives us some

clues on which physical models produce characteristic wave-

field variations, i.e. strong polarization anomalies. Materials

showing a significant C1312 are clearly the best candidates,

followed by materials with non-zero C3312 and C3213 elastic

coefficients.

Instead of perturbing one elastic coefficient, we now fill the

600r600r190 km cube of the preceding section with partially

oriented minerals. We use the elastic coefficients given by Estey

& Douglas (1986) for a mantle of pyrolitic composition, with

59 per cent olivine, 12 per cent garnet and 29 per cent pyroxene.

The isotropic mean of the structure is kept equal to the value in

the reference structure. The anisotropy in the model is constant

with depth, equal to 50 per cent of the deviation of the pyrolite

elastic tensor with respect to its isotropic mean. This simulates

a pyrolitic mantle with 50 per cent oriented crystals, producing

a 7 per cent P-wave velocity anisotropy. Anisotropy may reach

these values locally in the mantle, and although quite extreme,

this model is not unrealistic. The anisotropy of the olivine
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Figure 13. The same as Fig. 11 for a perturbation of C1213. Iteration 9

is shown.
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Figure 14. The same as Fig. 13 for an incident Love wave fundamental

mode.
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crystals actually dominates the anisotropy of the pyrolite, and

very similar results are obtained with models containing 30 per

cent oriented olivine crystals.

Pyrolite has a quasi-hexagonal orthorhombic structure with

the olivine a-axis aligned with the axis of quasi-hexagonal

symmetry. These two axes become dominantly oriented in the

flow direction of the mantle (see Mainprice et al. 2000, for a

recent review of the subject).

4.2.1 Horizontal symmetry axis

When the hexagonal symmetry axis remains horizontal, the

C1312 coefficient remains equal to zero, and the polarization

anomalies associated with the anisotropy remain small. The

amplitudes of the two horizontal components of the wavefield

for an incoming Rayleigh wave fundamental mode in a model

with the symmetry axis oriented at 45u to the x-direction are

shown in Fig. 15. We notice that the transverse component

remains small compared to the radial component, reaching

at the most 10 per cent. The transverse component is largest

in the anisotropic region. It is mostly in phase with the radial

component, giving a linear polarization with a slight clockwise

rotation with respect to the x-direction. In addition to pro-

ducing a polarization anomaly, the anisotropy deviates the

direction of energy propagation clockwise, as can be seen by

the location of the amplitude maximum and minimum of the

radial component.

In this model, an incident Love wave fundamental mode gets

a radial component mostly in phase with its transverse com-

ponent and that reaches about 25 per cent in amplitude. It also

gets a vertical component of the same order of magnitude. As

expected, results with a mirror symmetry with respect to the

x-direction are obtained when the symmetry axis is oriented at

x45u to the x-direction.

Using the method of Thomson (1997) and associated code,

we calculated the surface wave eigenfunctions in a laterally

homogeneous structure with the same characteristics as the

anisotropic part of our model. This is a way to verify our code

and to analyse the relation between polarization anomalies in

laterally homogeneous and heterogeneous structures. The first

eigenfunction in that model, corresponding to a quasi-Rayleigh

wave fundamental mode, has a quasi-linear polarization in the

horizontal plane rotated clockwise with respect to the radial

direction, with a transverse component equal to 21 per cent of

the radial component. The second mode, a quasi-Love wave

fundamental mode, has a radial component equal to 10 per cent

of the transverse component. The polarization anomalies have

the same sign as in our results. Although the amplitudes are

somewhat different, the order of magnitude of the polarization

anomalies is similar.

4.2.2 Tilted symmetry axis

Tilting the symmetry axis relative to the horizontal plane

leads to a non-zero value for C1312, resulting in much larger

polarization variations. The polarization in the horizontal

plane for an incident Rayleigh wave in a model with 50 per cent

oriented pyrolite with a symmetry axis tilting at 45u to the

horizontal, in a vertical plane oriented at 45u to the x-direction,

is shown in Fig. 16. We observe a prograde elliptic polarization,

with the ellipse’s large axis gradually varying in direction across

the structure. The amplitude of the transverse component

reaches 47 per cent of that of the radial component.
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Figure 15. Radial and transverse components of the total wavefield for a Rayleigh wave fundamental mode incident on a model with a heterogeneity

due to 50 per cent oriented pyrolite with quasi-hexagonal symmetry axis oriented in the horizontal plane at 45u to the x-axis. The oriented pyrolite is

located in the region delimited by the black square.
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Figure 16. The same as Fig. 11 for a heterogeneity due to 50 per cent

oriented pyrolite with quasi-hexagonal symmetry axis dipping at 45u to

the horizontal plane, in a vertical plane oriented at 45u to the x-axis.
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Using the code of Thomson in a laterally homogeneous

structure of oriented pyrolite with a tilted axis, we find that the

quasi-Rayleigh wave fundamental mode in that structure also

has a prograde elliptic motion. The transverse component is

equal to 90 per cent of the radial component, which means that

the ellipse nearly reduces to a circle. This is similar to what

we observe, when the wave reaches the far end of the aniso-

tropic region. Using a heterogeneous structure, more complex

features can of course be modelled, such as the width of the

transition zone where the polarization anomaly builds up, and

the interference pattern that occurs behind the anisotropy.

However, the two codes give compatible results.

The polarization anomalies observed for an incident Love

wave fundamental mode in a model with a tilted axis are very

large (Fig. 17). The polarization gradually rotates from trans-

verse to dominantly radial via a retrograde elliptic motion. A

vertical component also gradually builds up inside the aniso-

tropic region and reaches an amplitude of 150 per cent relative

to the transverse amplitude in the reference structure. In a

laterally homogeneous structure, the quasi-Love wave funda-

mental mode also shows a retrograde elliptic motion but the

transverse motion remains dominant: the radial and vertical

components of the surface polarization are respectively 33 and

15 per cent of the transverse component.

Tilting the pyrolite symmetry axis away from the hori-

zontal plane modifies the polarization dramatically. A similar

observation was made by Kirkwood & Crampin (1981) in

laterally homogeneous structures and by Park (1997) on long-

period surface waves. On the other hand, it does not modify

significantly the azimuthal dependance of the phase velocity

and the direction of greatest phase velocity. Classical surface

wave tomography, based on inversion of the phase velocity,

is therefore not well-suited for determining the inclination

of the axis in the vertical plane, and can benefit from the

complementary information that polarization anomalies can

bring.

5 C O N C L U S I O N S

We have presented a multiple-scattering method to model the

propagation of surface waves in 3-D isotropic and anisotropic

heterogeneous structures. Since no far-field approximation

is made, the heterogeneity may be located anywhere in the

structure, including around the source or in the vicinity of the

receiver. The wavefield is decomposed on the eigenfunctions of

a reference structure and expressed as a scattering series. The

heterogeneity modifies the phases and amplitudes of the modes

and couples them together.

We have first verified the method by comparing its results

with those of an exact method for a vertical cylindrical hetero-

geneity embedded in the crust. The performance of the method

has then been analysed for various mantle models with strong

isotropic and anisotropic heterogeneities. We have studied the

wavefield resulting from plane Rayleigh and Love wave funda-

mental modes at 25 s period incident on structures with 10 per

cent perturbation in S-wave velocity and anisotropic hetero-

geneities extending over several wavelengths. We have shown

that the scattering series usually converges despite the strength

of the heterogeneity used in these models. Several orders of

multiple scattering are nonetheless necessary to obtain a good

representation of the wavefield in the most severe cases, where

the single-scattering approximation would not be appropriate.

In order to save computing time, we have used Filon

integration extensively when implementing the method. This is

well suited to handle cases with an incident plane wavefield and

a dominant forward scattering, but is not well suited to handle

large reflected waves. The implementation can easily be modified

by returning to classical integration in order to be better suited

for such cases. Classical integration would also be better suited

to analyse the wavefield resulting from a source embedded in a

heterogeneous region, in order to analyse the observations of

Van der Lee (1998), for example.

The computations can easily be performed on an ordinary

workstation. For one period, the computing time depends

mainly on three factors: the number of scattering iterations,

the number of modes squared and the number of gridpoints

squared. The depth dependence of the model has no signi-

ficant influence on the computing time. As an example, each

iteration in the anisotropic cases presented in Section 4, with

eight modes and 2500 gridpoints, ran in 40 min on a DEC-

PWS500au workstation. The computer programs associated

with this work will be made available on request to the author

(valerie.maupin@geologi.uio.no).

We have also obtained important results concerning the

difference between wavefield perturbations caused by iso-

tropic and anisotropic heterogeneities. In models with isotropic

heterogeneities, the phase and amplitude of the wavefield vary

strongly, but polarization anomalies remain small. On the other

hand, models with realistic anisotropic heterogeneities may

produce very strong polarization anomalies, leading to trans-

verse components on the Rayleigh wave that have the same

order of magnitude as the radial component or large vertical

components for the Love waves. Our formalism allows a detailed

analysis of the different types of wavefield perturbations

that the individual elastic coefficients produce, and single out

which elastic coefficient must be non-zero for polarization

anomalies to appear. We show in particular that olivine pro-

duces very different polarization anomalies if its fast axis

is oriented horizontally or at an angle with respect to the
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Figure 17. The same as Fig. 16 for an incident Love wave fundamental

mode.
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horizontal plane, and that polarization analysis provides infor-

mation that complements the information obtained using phase

velocity.

Except for the Rayleigh wave fundamental mode in purely

isotropic structures, mode coupling is an important feature

of surface wave propagation in the heterogeneous structures

presented here, and could not have been neglected.
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A P P E N D I X A : I N T E G R A T I O N I N T H E
H O R I Z O N T A L P L A N E B Y T H E F I L O N
M E T H O D

Filon integration (Fraser & Gettrust 1984) is a method that

performs efficiently integrals of the form

F ¼
ðB

A

gðxÞ expðiaxÞdx : (A1)

Eq. (27), which we have to solve, has a more complicated form,

F ¼ expðikmxÞ
ð ð

gðx0, y0Þ expðÿiknx0Þ

| expðÿikm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxÿ x0Þ2 þ ðyÿ y0Þ2Þ

q
dx0dy0 , (A2)

where g(xk, yk) is a smooth function in xk and yk. Performing the

change of variable x̃=xkxx and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxÿ x0Þ2 þ ðyÿ y0Þ2

p
,

the integral becomes

F ¼ expðiðkm ÿ knÞxÞ

|

ð ð
gð~x, RÞ R

y0 ÿ y
expðÿikmRÞdR expðÿikn~xÞd~x : (A3)

For values of ykxy that are not close to zero, the function

g(x̃, R)[R/(ykxy)] varies smoothly in the horizontal plane, and

the integral is in a form suitable for using the Filon integration

method twice.

For values of ykxy that are close to zero, the function

g(x̃, R)[R/(ykxy)] has a singularity and this change of variable

is not suitable. In that case, exp(xikmR) does not vary strongly

with yk. Reorganizing eq. (A2) in order to extract the dominant

phase variation in x̃ from the integral in yk, we obtain

F ¼ expðiðkm ÿ knÞxÞ
ð ð

gð~x, y0Þ expðÿikmðRÿ ~xÞÞdy0

| expðÿikn~xÿ ikmj~xjÞd~x0 : (A4)

Since g(x̃, yk) exp(xikm(Rxx̃)) is smoothly varying both in yk
and in x̃, we can use an ordinary integral in yk and an ordinary

or a Filon integral in x̃ depending on how strongly varying the

function exp(xiknx̃xikm|x̃|) is.

A P P E N D I X B : A N A L Y T I C A L
I N T E G R A T I O N O F T H E H A N K E L
F U N C T I O N S C L O S E T O T H E O R I G I N

Close to R=0, the Hankel functions are singular and the integral

(21) requires special attention. In practice, we use the numerical

scheme described in Appendix A to perform the integral on the
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whole surface except on a small square defined by the eight

gridpoints neighbouring the observation point (x, y). On that

small square, the integrals are performed mainly analytically and

partly numerically, as described in this Appendix.

We assume that the variations of the potential J and of the

structure in that small square are small enough that they can be

neglected. One can therefore move a number of terms outside

the surface integral of eq. (27), for example, which becomes

$ð pÞm,2�,RRðx, yÞ

¼ expðikmxÞ ÿi

8cmumJm
1

ð
S

H
ð2Þ
2 ðkmRÞ

| expðÿiknx0Þ cosð2�Þdx0dy0

|
X

n

km

kn

�ð
Vm

1

2
ðc1122 ÿ c1111Þ

|Vndz0ðÿk2
n ÿ 2iknLx0 þ L2

x02Þ$ð pÿ1Þ
n ðx0, y0Þ þ . . .

�
, (B1)

where we have reinserted the classical Hankel function (eq. 26).

As we will now show, the surface integral in this equation can

be evaluated analytically on any disc centred on R=0. We

therefore perform the integral analytically on a disc centred on

R=0 and with radius A equal to the grid step. We complete

the integral on the small square by a numerical integration of

the function in the four remaining corners, where the functions

are not singular.

In order to perform the analytical integration on the disc,

and considering all the terms present in eq. (21), we need to

evaluate the following five integrals:

I0 ¼
ðA

0

H
ð2Þ
0 ðkmRÞ

ð2n

0

expðÿiknR cos hÞdhRdR , (B2)

I1 ¼
ðA

0

H
ð2Þ
1 ðkmRÞ

ð2n

0

expðÿiknR cos hÞðÿ cos hdhÞRdR , (B3)

I2 ¼
ðA

0

H
ð2Þ
1 ðkmRÞ

ð2n

0

expðÿiknR cos hÞðÿ sin hdhÞRdR , (B4)

I3 ¼
ðA

0

H
ð2Þ
2 ðkmRÞ

ð2n

0

expðÿiknR cos hÞ cosð2hÞdhRdR , (B5)

I4 ¼
ðA

0

H
ð2Þ
2 ðkmRÞ

ð2n

0

expðÿiknR cos hÞ sinð2hÞdhRdR , (B6)

where we use h=w+p instead of w in order to remain as close

as possible to classical conventions in cylindrical coordinate

systems.

The integrals in h are easily performed using the decom-

position of exp(xiknR cos h) in terms of Bessel and trigono-

metric functions given in eqs (9.1.44) and (9.1.45) in Abramowitz

& Stegun (1972). The results areð2n

0

expðÿiknR cos hÞdh ¼ 2nJ0ðknRÞ , (B7)

ð2n

0

expðÿiknR cos hÞðÿ cos hÞdh ¼ 2inJ1ðknRÞ , (B8)

ð2n

0

expðÿiknR cos hÞðÿ sin hÞdh ¼ 0 , (B9)

ð2n

0

expðÿiknR cos hÞ cosð2hÞdh ¼ ÿ2nJ2ðknRÞ , (B10)

ð2n

0

expðÿiknR cos hÞ sinð2hÞdh ¼ 0 : (B11)

We are left with having to evaluate the three following

integrals:

I0 ¼ 2n
ðA

0

H
ð2Þ
0 ðkmRÞJ0ðknRÞRdR , (B12)

I2 ¼ 2in
ðA

0

H
ð2Þ
1 ðkmRÞJ1ðknRÞRdR , (B13)

I4 ¼ ÿ2n
ðA

0

H
ð2Þ
2 ðkmRÞJ2ðknRÞRdR : (B14)

Transforming the Hankel functions into modified Bessel

functions according to formula (9.6.4) in Abramowitz & Stegun

(1972) and using the formula (6.521.4) for integrals of pro-

ducts of Bessel and modified Bessel functions in Gradshteyn &

Ryzhik (1980), we obtain the following results:

I0 ¼
4i

k2
n ÿ k2

m

�
1þ An

2i

�
knJ1ðknAÞHð2Þ0 ðkmAÞ

ÿ kmJ0ðknAÞHð2Þ1 ðkmAÞ
��

, (B15)

I2 ¼
ÿ4

k2
n ÿ k2

m

�
kn

km
þ An

2i

�
knJ2ðknAÞHð2Þ1 ðkmAÞ

ÿ kmJ1ðknAÞHð2Þ2 ðkmAÞ
��

, (B16)

I4 ¼
ÿ4i

k2
n ÿ k2

m

�
k2

n

k2
m

þ An
2i

�
knJ3ðknAÞHð2Þ2 ðkmAÞ

ÿ kmJ2ðknAÞHð2Þ3 ðkmAÞ
��

: (B17)

These expressions can be used only for calculating the coupling

of two different modes, with different kn and km. In order to

evaluate these expressions in the case kn=km, we calculate the

value of the expressions when knpkm and obtain

I0 ¼ nA2 J0ðkmAÞHð2Þ0 ðkmAÞ þ J1ðkmAÞHð2Þ1 ðkmAÞ
� �

, (B18)

I2 ¼
ÿ4

k2
m

þ inA2 J1ðkmAÞHð2Þ1 ðkmAÞ ÿ J0ðkmAÞHð2Þ2 ðkmAÞ
� �

,

(B19)

I4 ¼
ÿ8i

k2
m

ÿ nA2 J2ðkmAÞHð2Þ2 ðkmAÞ ÿ J1ðkmAÞHð2Þ3 ðkmAÞ
� �

:

(B20)

We have verified numerically the correctness of these expressions.

It can also be shown that these integrals tend to zero when A

tends to zero, meaning that the field scattered by an infinitely

small disc tends to zero.
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