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- GEO-ELSE is a Spectral Elements code for the
study oft wave propagation phenomena in 2D or 3D
complex-domain

Developers:

- CRS4 (Center for Advanced, Research and Studies
In Sardinia)

- Politecnico di Milano, DIS (Department of Structural
Engineering)

INative parallelj_mplementation P

e

Naturally oriented to large scale applications
( > at least 10° grid points)




Why. using, speciral.elemenis. 2
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~+-Suitable for modelling a variety of_physi&il problems
(acoustic and elastic Wave propagation, thermo elasticity,
flurd dynmamics)
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¢ Accuracy of high-order methods
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& Suitable for implementation in parallel architectures
S
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" e Great éaT/-éhtagés from last generation of hexahedral mesh
creation program (e.g.: CUBIT, Sandia Lab:.)
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DyrRamic equilibrium;in; the weak form:

stzzjgpuividﬂ+jgaijgij szJ-rtivi +J-Q f.v:

where u; = unknown displacement function

Vv, = generic admissible displacement function (test function)

;= preseribed' tractions at the boundany, [
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fir= Bresched body force distribution in Q




Time, advancing, scheme

n+l un-l
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Courant-Friedrichs-Levy (CFL) stability condition
At < n(ﬂj
c min
WSpatial discretization

Spectral element method SEM (Faccioli et al., 1997)




BibJiograph

“Forward modelling by the: Fourier method

Solutions of the equations of dynamics elasticity by a Chebyshev spectral
method

2D and 3D elastic wave propagation by a pseudo-spectral domain
decomposition method

e specizalselenenimieiniod anrerficieni ool to simulate the seismic
response of zDrand 3D geological structures.




Speciral discretization of the

35 4

“ihe domain is splitinte
guadrilaterals (hexahedra)

Each subdomain is
mapped onto a reference
element

LGL nodes are introduced

Spectral gra=poeinisiae
MEppPed Packienio the
domain

orridlr.




[he Legendre-Gauss-Lobatto
glladrartir'z rorritl

N
fl Fax= D ey f (%)
k=0
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L\ (x,) being the Legendre orthogonal pelynomial
of degree N, calculated at the LGl node X,
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2D spec fral elemenis and LGL nodes. for

@ Zrzr oz or Tz oe /f/ff Jelgree




Selection of the fesit runcitions.

ANEitable CHOICE Sr the (L ranae polynomial of
degree N, whichris equal' to one at the | " CGL node
and vanishes at all other nedes

Internal point Interface point
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FEM/SEM comparison

~ Convergence of: the method

FEM —»  [T-U,, [<Ch"

SEM —»  |T-u,, [<Ch"e™
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"The SEM converges more rapidly then FEM or,
equivalently, it is more accurate for a given number
of nodal points (spectral accuracy)
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Why using spectral elements, ?

Acoustic Wavepropagatlon through anlrregular domain:
= Simulation -vmm spectral,  degfeen 1 (left) exhibit
snumer' SPErsion due to poor accuracy.
Simulation with spectral degree 2 (right) provides better

results. Change of spectral degree Is done at run time.
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Why using speciral elements ?

Domain geometry

2500 m/s

3000 _//// 3300

27 700 / 3600

[
700 3400

3000
e

Slide 13




» Fully unstructured
mesh (-~ 39000 quads)

»> Spectral degree n=4

» ~ 618000 spectral
grid-points
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Why using speciral elements ?

N - e —

—— ——

~ e Spapshots are taken every 0.25's,up to 2.00 s
e Pressure values are normalized to [-1,+1]
(from black to white).
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Why using speciral elements ?

N - e —

—— ——

~ e Spapshots are taken every 0.25's,up to 2.00 s
e Pressure values are normalized to [-1,+1]
(from black to white).
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Why using speciral elements ?

- = e —
B —

" Snapshots are taken every 0.25's, up to 2.00 s
e Pressure values are normalized to [-1,+1]
(from black to white).

Slide 18




Why using speciral elements ?

N - e —

—— ——

~ e Spapshots are taken every 0.25's,up to 2.00 s
e Pressure values are normalized to [-1,+1]
(from black to white).
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Why using speciral elements ?

~ e Spnapshots are taken eery w2‘up to 2.00 s
e Pressure values are normalized to [-1,+1]
(from black to white).
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Why using speciral elements ?
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FEM/SEM comparison

“Mass matrix

rEmM —p» Non diagonal and symmetric

SEM - Diagonal
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“SEM coupled with an explicit time approximation
scheme is very effective in term of CPU time saving
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Computational
domain partitioning
(METIS, University of

Minnesota, USA)

Algebraic system
solution
(AZTEC, Sandia
National
Laboratories, USA)

S

P_-C(r'G“e_rfEffiCi;ncy = Tseq / (NCPU : Tpar') =3 900/0
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Absorbihigiboundar/es

¥-displ
- 3.5493e-07
l2.94928-DT
2.3491e-07
- 1.743e-07
- 1.1489e-07

- 5.4886e-08
--5.1236e-09

-6.5133e-08
-1.2514e-07
-1.8815e-07
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Viscoelasiic.aamping

V-displ
-3 546Te-07
lz.gsnze-n?
- 2.3536e-07
-1.75871e-07
-1.1606e-07

- 5.6401e-08
--3.2635e-09
-6.2808e-08
-1.22566-07

-1.8221e-07

Modified wave equation

Q factor, function of the frequency
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3D Soil-Structure - Acquasania viaduct
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3D Soil-Structure - Acqguasania viaauct

Complex D layered structures:
with two main faults

- e
A ————

Alluvial Deposits
(max depth 30 m) with a
masenyarailwaysrdge
W crossing the valley
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Tiurkey,earfhquaker 999,
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GEO-ELSE Viscoplastic

— Elasioviscoplasiic consiiiltive rrocde]

— - — ——

— Total strain tensor can be written as:

. - - g - VP

vp
and constitutive behaviour is given by: e D®: [ag L0E ]

o ot ot

— The flow rule can be written as below.
o’

— - =7/m<¢( f )> (Perzyna,.1963)
wwhere fuissthenieldftnction, ¢( ) is the viscous nucleus,
WS a parameter which describes the system evolution rate,

m, is the gradient to the plastic potential m=0g/dc; , and
characterizes the direction of viscoplastic strain.

-
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GEO-ELSE Viscoplastic

where fy IS the value characterizing the stress level below
which no flow occurs, N IS constitutive parameter

— Von Mises o Drucker-Prager yield surface

—lersize of the yield surface varies according,to,a suitablé
Seitnening  lawAaN{inear dependepee™ron" the equivalent
Ndeviateric viscoplastic strain & )
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Implemeniation, of fhe viscoplastic model in

~or simplicity absence of absorbent conditions and not viscous material
[Ma(t)+[K|u(t) = F,,(t)
with  [K]u(t)=F, = jadQ
Q

F_<F

ext int

\[MT" AL + 20, —u,
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1 -Simulation of the shear band creation

© ve= 0, ww=vdl)

SERRREREL
: I'4

L1-]

vy =0 ol 1"‘2 { I‘j G =0

_q0*

“A Taylor-Galerkin algorithm for shock wave propagation and strain
localization failure of viscoplastic continua”
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t = (£0)%) PlicL

Spectralldegree
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1 -Simulation of the shear band creation

e STohect;aI d'eg;ee — () Dt = 10% Dtcr.
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1-Simulation of the shear. band creation

@ l o . ~

SD =4, SD = 8, RSP =7 SD=16
B OHESIEIEINGAES S561 Nodes = 1225 Nodes = 2145
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1-Simulation of the shear. band creation

NN

SPg=ny SD = 4 S D=1 SN —
Noedesi=232" "Nodes = 581" Nodes = 896 Nodes = 1279
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2-SoJl structure - hazard ana/sys

Vp = 300 m/s
Vg =150 m/s
p=1800 kg/m3

<

‘W

T
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2-SoJl structure - hazard ana/sys




2-Soll structure - time fhiistor/es

0.04
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2-Soll structure - time fhiistor/es

0.04 T T T T

T T e T e T e T e T e

Digpl. ¥ [m]

Elastic
erncIVV LA AU o e e —— —Viscoplastic

LIRYN (XS
iy
!

Displ. ¥ [m]

Time [5]
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