

DI MILANO

Elastic wave propagation in heterogeneous media using the spectral element method

Dr. M. Stupazzini^(1,2), Prof. F. Sanchez-Sesma⁽³⁾, Prof. E. Faccioli⁽²⁾ and Dr. F. Maggio⁽⁴⁾ (1) Ludwig-Maximilians-Universität München (2) Dipartimento di Ingegneria Strutturale - Politecnico di Milano (3) Universidad Nacional Autonoma de Mexico (4) Center for Advanced Studies, Research and Development in Sardinia

Synthetic description of Geo-ELSE code

GEO-ELSE (GEOtechnical – ELasticity by Spectral Elements)

- · GEO-ELSE is a Spectral Elements code for the study of wave propagation phenomena in 2D or 3D complex domain
- Developers
 - CRS4 (Center for Advanced, Research and Studies in Sardinia) - Politecnico di Milano, DIS (Department of Structural Engineering)
- Native parallel implementation
- Naturally oriented to large scale applications (> at least 10⁶ grid points)

Spatial discretization

• Spectral element method SEM (Faccioli et al., 1997)

Time advancing scheme

• Finite difference 2nd order (LF2 - LF2), conditionally stable

Validation of SEM with gradient material properties

The results of the comparison between an approximate analytical formulae for elastic 2-D and 3-D Green's functions for a constant gradient propagation velocity medium (Sesma et al., 2001) and GEO-ELSE implementation of the gradient material properties is here presented. The excitation is an applied triangular force located in the center, along the vertical direction.

Snapshot of displacement (u,)

Spectral discretization of the spatial domain

- 1. The domain is split into quadrilaterals (hexahedra)
- 2 Each subdomain is mapped onto a reference element
- 3. LGL nodes are introduced
- 4. Spectral grid-points are mapped back onto the domain

Why using spectral elements ?

- Suitable for modelling a variety of physical problems (acoustic and elastic wave propagation, thermo elasticity, fluid dynamics)
- Accuracy of high-order methods
- · Suitable for implementation in parallel architectures
- · Great advantages from last generation of hexahedral mesh creation program (e.g.: CUBIT, Sandia Lab.)

Vp Vs p Q [m/s] [m/s] [kp/m*3] (f = 1Hz)

635 2400

Applied study case: Acquasanta viaduct (Genova, Italy) 3D model characteristics (Stupazzini, 2004):

- Constant gradient of mechanical properties for the schists and the serpentine rock:
- subvertical fault (red line) between the schists, on the Ovada side, and serpentine rock, on the Genoa side:
- soil-structure interaction:
- topographic amplification;
- soft soil amplification (caused by the superficial
- alluvium deposit shown in light blue);

Structural analysis vs soil-structure analysis The excitation is first imposed to the bottom of each viaduct pier (red line) and then as a shear plane wave, propagating vertically from the bottom (blu line); Ricker wavelet, fmax=6 Hz, $t_0 = 1.2s$ and amplitude = 1cm

 SEM technique is able to handle complex geometries involving strongly heterogeneous media.

CONCLUSIONS:

 Soil-structure interaction can be studied and could lead to important consequences in seismic design code

Faccioli E., Maggio F., Paolucci R., Quarteroni A. (1997) - "2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method". Journal of seismology, 1, pp. 237-251.

Sanchez-Sesma F.J., Madariaga R. and Irikura K. (2001) - "An approximate elastic two-dimensional Green's function for a constant-gradient medium" Geophys. J. Int. 146, 237-248

Stupazzini M. (2004) - "A spectral element approach for 3D dynamic soilstructure interaction problems". Milan University of Technology: PhD thesis.

Time histories (u,)

