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On the Accuracy of the Finite-Difference Schemes: The 1D Elastic Problem

by Jozef Kristek and Peter Moczo

Abstract We present a 1D finite-difference (FD) scheme that is based on the
application of Geller and Takeuchi’s (1998) optimally accurate FD operators to the
heterogeneous strong-form equation of motion developed by Moczo et al. (2002).
We numerically compare the scheme with two other FD schemes that approximate
the heterogeneous strong-form equation of motion, one using conventional 2nd-order
FD operators, the other using staggered-grid 4th-order FD operators. The numerical
comparison is based on the envelope and phase misfits between tested and reference
solutions. We discuss the error due to internal interface (primarily controlled by the
boundary condition and its numerical approximation) and error due to grid disper-
sion. We demonstrate the superior accuracy of the scheme based on the application
of the optimally accurate operators.

Introduction

Consider a 1D problem in a perfectly elastic isotropic
medium with density q and Lamè’s elastic coefficients l and
k being continuous functions of z. Then a plane wave prop-
agation in the z direction is described by the equation of
motion and Hooke’s law, in the displacement-stress (DS)
formulation,

¨qd � r � f, r � Cd . (1),z ,z

Here, d(z,t) is the displacement, r(z,t) is stress, f(z,t) is body
force per unit volume either in the z direction, in the case of
the P wave, or in a perpendicular direction, in the case of
the S wave. Elastic modulus is C(z) � k(z) � 2l(z) in the
first case or C(z) � l(z) in the latter one. The double dot
above the symbol means the time derivative. The subscript
,z in r,z and d,z means the spatial derivative. Note that we
could equivalently consider the displacement-velocity-stress
or velocity-stress formulations instead of the displacement-
stress formulation (e.g., Moczo et al., 2004, 2006).

An alternative formulation is the so-called displacement
(D) formulation

¨qd � (Cd ) � f . (2),z ,z

These formulations of the equation of motion are examples
of strong formulations.

In principle, one can integrate the equation of motion
over a spatial domain and then apply a FD approximation to
the integrated equation (e.g., Sochacki et al., 1991; Zahrad-
nı́k et al., 1994). It is also possible to obtain a weak form of
the equation of motion and apply the FD method to obtain
its discrete approximation. Here we do not discuss this type
of scheme.

Most of the FD schemes solve one of the strong forms
in the time domain. Because only displacement values are
explicitly present both in the displacement formulation of
the equation of motion and conventional grid, since the early
applications of the FD method in seismology, e.g., Alterman
and Karal (1968), Boore (1970, 1972), the displacement FD
schemes have been naturally formulated for the conventional
grids. Because the conventional-grid displacement FD
schemes had problems with instabilities in models with high-
velocity contrasts and with grid dispersion in media with
high Poisson’s ratio, Virieux (1984, 1986) introduced the
staggered-grid velocity-stress FD schemes for modeling
seismic-wave propagation. To increase the computational
efficiency, Levander (1988) introduced the 4th-order
staggered-grid FD schemes. Then the staggered-grid FD
schemes became the dominant type of schemes in the FD
time-domain (FDTD) modeling of seismic-wave propagation
and earthquake motion. For more see, for example, recent
reviews of the FD modeling by Moczo et al. (2004, 2006).

The preceding displacement-stress formulation is also
naturally connected with the staggered-grid schemes.

Among all FD schemes solving a strong-form equation
of motion, the most popular are so-called heterogeneous FD
schemes. This is because in a heterogeneous FD scheme all
interior grid points (points not lying on borders of a grid)
are treated in the same way no matter what their positions
are with respect to the material discontinuity or smooth het-
erogeneity. The heterogeneity is accounted for only by as-
signing, say, effective grid values of elastic moduli and den-
sity to appropriate grid positions. The problem is that a
strong-form equation solved by most of the heterogeneous
FD schemes is not valid at a material discontinuity. If the
strong-form equation is not valid at the material disconti-
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nuity, its FD approximation can hardly be appropriate for
media with material discontinuities.

Moczo et al. (2002) analyzed the 1D problem in a me-
dium consisting of two half-spaces, that is, the problem of
planar material discontinuity in a medium. They found such
a form of the equation of motion and Hooke’s law that is
valid both at points outside a material discontinuity and at a
point on the material discontinuity. We can call such a for-
mulation a heterogeneous strong-form equation of motion.
Moczo et al. (2002) also showed a simple physical model
of the contact of two media.

The heterogeneous strong-form equation of motion can
be, in principle, approximated by different FD schemes. In
this study we compare three very different, and, at the same
time, the most representative, approaches: applications of
conventional, staggered-grid, and optimally accurate opera-
tors.

Geller and Takeuchi (1995, 1998) developed their op-
timally accurate FD schemes in application to the Galerkin-
type weak form of Strang and Fix (1973) and Geller and
Ohminato (1994). The clever idea of Geller and Takeuchi
(1995) was to minimize the error of the numerical solution
first at eigenfrequencies (or resonant frequencies), that is, at
frequencies at which oscillatory motion of a linear mechan-
ical system or finite volume of elastic continuum is naturally
most amplified. Geller and Takeuchi (1995) derived a gen-
eral criterion which requires that the inner product of an
eigenfunction and the net error of the discretized equation
of motion should be approximately equal to zero when the
operand is the eigenfunction and the frequency is equal to
the corresponding eigenfrequency. The criterion can be used
to derive optimally accurate operators without knowing the
actual values of the eigenfrequencies and eigenfunctions.
Geller and Takeuchi (1995) showed that in a heterogeneous
medium the criterion is the logical extension of the criterion
to minimize grid dispersion of phase velocity for a homo-
geneous medium. Geller and Takeuchi (1998) used the cri-
terion to develop optimally accurate 2nd-order FDTD
scheme for the elastic 1D case. Takeuchi and Geller (2000)
then developed optimally accurate FDTD operators for the
2D and 3D cases. Mizutani (2002) developed a scheme ca-
pable of accounting for an arbitrary position of the material
discontinuity in the grid.

Other interesting approaches to minimize the error of a
FD approximation include, for example, minimization of the
relative error in group velocity caused by the grid dispersion
within a specific frequency band emitted by active sources
(Holberg, 1987) in the time domain, and schemes presented
by Jo et al. (1996), Arntsen et al. (1998), and Štekl and Pratt
(1998) in the frequency domain.

In this study we

• Apply the optimally accurate operators developed by
Geller and Takeuchi (1998) to a heterogeneous strong for-
mulation of the equation of motion developed by Moczo

et al. (2002) for the 1D problem; we call the corresponding
FD scheme Doptm2.

• Numerically compare Doptm2 with schemes based on ap-
plication of standard conventional 2nd-order FD operators
and staggered-grid 4th-order operators to a heterogeneous
strong formulation of the equation of motion developed by
Moczo et al. (2002) for the 1D problem; the two latter
FD schemes are hereafter called Dconv2 and DSstag4,
respectively.

• Numerically investigate error at the internal material dis-
continuity (we do not address the problem of the free sur-
face) and error due to grid dispersion.

Note that we selected the three types of FD operators because
they are the most representative among all developed and
used FD operators. We restrict this study to the 1D problem
because it is methodologically basic and important. Despite
the relative simplicity of 1D problem, compared with the 3D
problem, its numerical investigation yields extensive mate-
rial, and, in our opinion, interesting and important findings.
The 3D problem will by addressed by the authors in a sepa-
rate study.

The Dconv2, DSstag4, and Doptm2 FD Schemes
for a 1D Elastic Problem

The heterogeneous formulation of the 1D strong-form
equation of motion is addressed in detail by Moczo et al.
(2002); see also Moczo et al. (2004, 2006). We show here
only equations that will be approximated by the three inves-
tigated FD schemes.

Displacement-Stress FD Scheme on the Staggered
Grid: DSstag4

The equation of motion and Hooke’s law for a point at
the material discontinuity between two half-spaces (assumed
for a while and without loss of generality at z � 0) have the
form (Moczo et al., 2002):

¨ ¯q̄ (0) d (0) � r (0) � f (0) (3),z

and
¢r (0) � C (0) d (0) , (4),z

respectively, with a density equal to the arithmetic average
of the densities in the two half-spaces, and elastic modulus
equal to the harmonic average of the moduli in the two half-
spaces:

� �q̄ (0) � 0.5 � [q (0) � q (0)] , (5)

and
�¢ �C (0) � 2/[1/C (0) � 1/C (0)] . (6)
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The average spatial derivatives of the stress and displace-
ment are

� � � �¯r (0) � f(0) � 0.5 • [r (0) � r (0) � f (0) � f (0)],z ,z ,z

� �d (0) � 0.5 • [d (0) � d (0)] . (7),z ,z ,z

Equations (3) and (4) for a point at the material discontinuity
have the same form as the equation of motion and Hooke’s
law at a point away from the material discontinuity.

If we neglect averaging of the spatial derivatives at the
interface, a simple FD approximation to the preceding het-
erogeneous displacement-stress formulation of the equation
of motion can be written as

1m H m m m mT � C [a (D � D ) � b (D � D )]I�1/2 I�1/2 I�2 I�1 I�1 Ih
m�1 m m�1D � 2D � DI I I

21 D t m m m m� [a (T � T ) � b (T � T )]I�3/2 I�3/2 I�1/2 I�1/2A hqI

2D t m� F (8)IAqI

where , , and are discrete approximations tom m mT D FI�1/2 I I

stress, displacement, and body-force values r ([I � 1/2]h,
m Dt), d (I h, m Dt), and f (I h, m Dt), respectively, a �
�1/24, b � 9/8, Dt is the timestep, h is spatial grid spacing,
and and are given by (Moczo et al., 2002)A Hq CI I�1/2

zI�1/2

1Aq � q (z)dz , (9)I �h
zI�1/2

zI�1 �1
1 1HC � dz . (10)I�1/2 � � �h C (z)

zI

In the scheme, referred to hereafter as DSstag4, the spatial
operator is fourth-order accurate, time operator second-order
accurate. A computer algorithm performing schemes (8) can
be designed to involve four multiplications and nine addi-
tions.

Displacement FD Schemes on the Conventional Grid:
Dconv2 and Doptm2

The equation of motion for a point at the material dis-
continuity between two half-spaces (also here assumed at
z � 0) has the form

¨ ¯q̄ (0) d (0) � (Cd ) � f (0) . (11)⎢,z ,z z�0

Here, the average density and body force are¯q̄ (0) f (0)
given by equations (5) and (7), respectively, and

1 �� � (Cd ) .(Cd ) � (Cd ) ⎢ (12)⎢ ⎢ ,z ,z,z ,z ,z ,z �z�0 � z�0z�02

In a simple FD approximation we neglect the averaging
of derivatives at the interface. Thus we approximate single
term (Cd,z),z using the 2nd-order central difference

1•(Cd ) (13)� (Cd � Cd,z ,z ⎢ ⎢ ⎢ ) .I ,z ,zI�1/2 I�1/2h

Then, we approximate Cd,z in the same way as we approx-
imated stress in the DS formulation.

To be concise, we approximately follow notation used
by Geller and Takeuchi (1995, 1998) to formulate the
scheme based on the application of the 2nd-order conven-
tional operator, Dconv2, and the scheme based on the
application of the 2nd-order optimally accurate operators,
Doptm2. A FD approximation to equation (11) can be written
as

m m mA (M,i) � K (M,i) D (M,i) � F , (14)I I I� �

where m is the time level, at which the equation of motion
is approximated, I is the index of the grid spatial position at
which the equation of motion is approximated, M is the time
summation index, and i is the spatial summation index.
Matrices and arem mA KI I

m�1 m�1 m�1a q a q a qI�1 I�1 I I I�1 I�1

m m m mA (M,i) � a q a q a q (15)I I�1 I�1 I I I�1 I�1� �m�1 m�1 m�1a q a q a qI�1 I�1 I I I�1 I�1

and

m�1 m�1 m�1k C k C k CI�1 I�1 I I I�1 I�1

m m m mK (M,i) � k C k C k C . (16)I I�1 I�1 I I I�1 I�1� �m�1 m�1 m�1k C k C k CI�1 I�1 I I I�1 I�1

For Dconv2, the matrices are

0 1 0
Aq ImA � 0 �2 0 (17)I 2D t � �

0 1 0

and
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0 0 0
1mK � 1 �2 1I 2h � �

0 0 0 (18)

HC 0 0I�1/2

1 H H0 (C � C ) 0 .I�1/2 I�1/22� �H0 0 C I�1/2

For Doptm2, the matrices are

1/12 10/12 1/12
Aq ImA � �2/12 �20/12 �2/12 (19)I 2D t � �

1/12 10/12 1/12

and

1/12 �2/12 1/12
1mK � 10/12 �20/12 10/12I 2h � �

1/12 �2/12 1/12 (20)

HC 0 0I�1/2

1 H H0 (C � C ) 0 .I�1/2 I�1/22� �H0 0 C I�1/2

Both Dconv2 and Doptm2 are formally 2nd-order accurate
in space and time. In the case of a homogeneous medium
the matrices take simpler forms:

0 1 0
qmA � 0 �2 0 ,I 2D t � �

0 1 0
0 0 0

CmK � 1 �2 1 (21)I 2h � �
0 0 0

for Dconv2 and

1/12 10/12 1/12
qmA � �2/12 �20/12 �2/12 ,I 2D t � �

1/12 10/12 1/12
(22)

1/12 �2/12 1/12
CmK � 10/12 �20/12 10/12I 2h � �

1/12 �2/12 1/12

for Doptm2.

Note that in the 1D case, Dconv2 is equivalent to DSstag2,
which is the 2nd-order displacement-stress staggered-grid FD
scheme.

Whereas Dconv2 and DSstag2 are explicit FD schemes,
it is clear from equations (19) and (20) that Doptm2 is an
implicit scheme. We solve the implicit scheme by the
predictor-corrector algorithm as suggested by Geller and
Takeuchi (1998). A computer algorithm performing Dconv2
can be designed to involve three multiplications and three
additions or two multiplications and six additions. The two
cases have different memory requirements. The algorithm
for Doptm2 involves six multiplications and nine additions.
The same numbers were found by Geller and Takeuchi
(1998); their 1D optimally accurate scheme and Doptm2
have, obviously, the same structure.

Analytical Solution

Consider a homogeneous half-space with index 1 sepa-
rated from a homogeneous half-space with index n � 1 by
a stack of n � 1 homogeneous layers with indices 2, 3, . . .,
n. A thickness of the jth layer is hj, velocity and density in
the jth layer are cj and qj. Let a coordinate axis z be oriented
positive in the direction of increasing layer index. Let inter-
face between half-space 1 and layer 2 be at z1 � 0 and
interface between layers j � 1 and j, say, the upper boundary

of layer j, at ; see Figure 1. Assume a known
j�1

z � hj�1 � k
k�2

wave propagating in the negative z direction from half-space
n � 1 through the stack of layers into half-space 1. Then
displacement in half-space 1 is

(1) �1 (1)d (z, t) � F {S ( f ) • H (z, f )}; z � 0 . (23)

Here F�1 is the inverse Fourier transform, S(f) is the spec-
trum of an input signal (spectrum of a source time function),
and H(1) (f) is the transfer function

(1)H (z, f ) �

2xqn�1
2x(q A � q A ) � i(A � x q q A )1 22 n�1 11 21 1 n�1 12

�i2pfz
exp� �c1 (24)

with angular frequency x � 2pf, wave impedance qj � qjcj,
matrix A � An An�1 . . . A2, layer matrix

sin bj
cos bj xqjA � , (25)j

�xq sin b cos b� �j j j
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Figure 1. A 1D model of a stack of horizontal
parallel homogeneous elastic layers between two half-
spaces. The ith layer is characterized by velocity ci,
density qi, and thickness hi. The half-spaces are char-
acterized by velocities c1 and cn�1, and densities q1

and qn�1, respectively.

and bj � xhj /cj. In the limit case of a contact of two half-
spaces we have simple

2q �i2p f z2(1)H (z, f ) � exp (26).� �q � q c1 2 1

The displacement in layer j is

(j) �1 (j)d (z, t) � F S( f ) • H (z, f ) ;� �
z � z � z ; 2 � j � n. (27)j�1 j

Here,

ix(j) �H (z, f ) � B exp (z � z ) �m�1� � �cj (28)
2xqix n�1�B exp � (z � z )m�1� �� � � � �c B D � B Dj

with

(U) (U) (U) (U)� 2B � A � x q q A � ix q A � q A21 1 j 12 1 22 j 11� � (29)

(L) (L) (L) (L)� 2D � x q A � q A � i A � x q q An�1 11 j 22 21 j n�1 12� � � �
and

(L) (U)A � A A L A , A � A A L A . (30)n n�1 j j�1 j 2

The preceding formulas were used to calculate reference (ex-
act) solutions for the models of two half-spaces and stack of
layers.

Envelope and Phase Misfits

Consider a signal s(t) that is to be compared with a
reference signal sref(t). Let ŝ(t) and ŝref(t) be analytical signals
corresponding to s(t) and sref(t), respectively. Simple esti-
mates of the envelope and phase misfits of signal s(t) with
respect to sref(t) can be defined as (Kristek et al., 2002)

2 2
EM � (|ŝ(t)| � |ŝ (t)| |ŝ (t)| (31)�� ref � ref	
 


t t

and

2�Arg[ŝ(t)] � Arg[ŝ (t)]�ref⎥ŝ (t)⎥� ref� �
 pt

PM � . (32)
2⎥ŝ (t)⎥� ref


t

These misfits give practically the same numerical values as
those defined by Kristekova et al. (2006) if the signals are
as simple as in this study.

Wave-Field Excitation in the FD Simulations

Wave is radiated from a chosen grid point in a chosen
direction by using the Alterman and Karal (1968) decom-
position in which a displacement corresponding to a source
time function is prescribed. The source time function used
in numerical simulations is Gabor signal, that is, a harmonic
carrier with a Gaussian envelope, s(t) � exp {�[xp(t �
ts)/cs]

2} cos [xp(t � ts) � h]. Here, xp � 2pfp, t � �0, 2ts�,
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Figure 2. Amplitude Fourier spectrum of Gabor
signal used as the source time function in numerical
tests.

fp � 0.5 Hz is predominant frequency, cs � 11 controls the
width of the signal, h � p/2 is a phase shift, and ts � 0.45cs/
fp. The amplitude spectrum of the signal is shown in
Figure 2. The amplitude spectrum falls from its maximum
at the frequency fDOM � 0.5 Hz by three orders of magnitude
down to a value at fMAX � 0.74 Hz. In other words, the
signal has relatively narrow spectrum with a dominant
frequency.

In the implementation of the Alterman-Karal (1968) de-
composition, the wave field is radiated in a lower half-space
at a distance of 13h/2 from the interface (see Fig. 6). To
match this distance of radiation in the analytical calculation,
a formal layer (the same material as in the lower half-space)
with thickness of 13h/2 was considered in the lower half-
space.

Homogeneous Space

Consider a homogeneous perfectly elastic medium with
wave velocity c � 3464 m/sec and density q � 2700 kg/
m3. Define

k � c f � c 0.5 m and	 	DOM DOM (33)

k � c f � c 0.74 m.	 	MIN MAX

Let h be a grid spacing, N is the number of grid spacings
per kMIN, that is,

N � k h. (34)	MIN

As shown by Geller and Takeuchi (1998), the conventional
and optimally accurate operators satisfy the same stability
condition (the Courant stability condition)

h
D t � . (35)

c

The stability condition for the 4th-order staggered-grid
scheme is, for example, Moczo et al. (2004),

6 h
D t � . (36)

7 c

Then the corresponding stability ratios are

c
p � D t (37)

h

and
7 c

p � D t, (38)
6h

respectively. In any case, p � 1, that is, p is a fraction of
the maximum possible timestep.

Figure 3 shows envelope and phase misfits of the FD
schemes Dconv2, DSstag4, and Doptm2 as functions of N
and p � {0.10, 0.15, . . ., 0.95} at three propagation dis-
tances, kDOM, 10kDOM, and 20kDOM, from the grid point at
which the wave is radiated. Whereas the misfits of Dconv2
and Doptm2 are shown for N � {10, 11, . . ., 30}, the misfits
for DSstag4 are shown for N � {5, 6, . . ., 30}. This is be-
cause many users of the 4th-order staggered-grid schemes
use N as low as 5 or 6. Based on Figure 3 we can summarize
the following.
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Figure 4. Curves of minima of the envelope misfit
EM(N,p), phase misfit PM(N,p), and sum of the two
misfits EM(N,p) � PM(N,p) as functions of N and p.

Dconv2 (Equivalent to DSstag2). For given N and distance
the error monotonically grows with decreasing p. For given
p and distance the error monotonically decreases with N. For
given N and p the error monotonically grows with distance.
The growth of the error is significant. Note that at the limit
case of p � 1 the scheme is accurate. This is because the
grid phase velocity is accurate in such a case (e.g., Geller
and Takeuchi, 1998).

Dstag4. For a given distance, the error as a function of p
is not monotonic for N smaller than some value: it decreases
from its maximum for p � 1 down to some minimum and
then increases again with decreasing p. For small N and large
p the error is considerably larger than that of Dconv2. For
given N and p the error monotonically grows with distance.

An implication for numerical calculations using Dstag4
is that in the homogeneous medium an adjusted, sufficiently
small p has to be used for a chosen N to reduce grid disper-
sion. Figure 4 shows curves of minima of the envelope mis-
fit, phase misfit, and sum of the two misfits as functions of
N and p, that is, EM(N, p), PM(N, p), and EM(N, p) �
PM(N, p). The curves were constructed from the numerical
calculations for the propagation distance of 20kDOM shown
in Figure 3. In a homogeneous medium, for a chosen N, such
p should be taken, for which EM(N, p) � PM(N, p) takes
the minimum value. EM(N, p) along its minimum curve as
well as PM(N, p) along its minimum curve should theoret-
ically be equal to zero because they correspond to (N, p)
curve with zero grid dispersion. Because the errors were
determined numerically, they are not strictly zero.

Doptm2. Compared with the Dconv2 and DSstag4, the
error is negligible; its relatively slow growth with distance
can be seen (in Fig. 3) only for unreasonably small N.

Figure 5 compares the envelope and phase misfits at

wave-propagation distances of 10kDOM and 20kDOM for two
values of the stability ratio p � {0.20, 0.95}. The misfit
values smaller than 1E�3 are not shown because the nu-
merical calculations are not accurate enough to properly
evaluate smaller misfits. The phase misfit for Dconv2 at a
distance of 20k, and for N � 6, is larger than 1 (which means
phase shift by p); therefore, it is not shown in the figure.

For p � 0.95, that is close to the maximum possible
timestep, DSstag4 is the least accurate, even less accurate
than the 2nd-order Dconv2 scheme. The rates of conver-
gence of DSstag4 and Dconv2 are the same: the slope of the
lines is �2. This is an important aspect because DSstag4
formally is the 4th-order, whereas Dconv2 is only 2nd-order
accurate. Doptm2 clearly is the more accurate with the rate
of convergence equal to �4. The convergence rates are the
same for both the envelope and phase misfits.

For p � 0.20 the picture looks very different because
of the previously mentioned fact that the error of DSstag4 as
a function of p is not monotonic for N smaller than some
value. The low values of the envelope and phase errors are
because the DSstag4 phase velocity in homogeneous me-
dium is exact for some low values of p and N as shown by
R. J. Geller et al. (unpublished work) and N. Hirabayashi et
al. (unpublished work).

Note that although such an adjustment of the stability
ratio p value is possible with DSstag4 in the homogeneous
medium (at a price of a small fraction of the maximum pos-
sible timestep), it is not possible in general in the hetero-
geneous medium. Therefore, the small errors of the DSstag4
shown in Figure 5 do not mean that DSstag4 could compete
in accuracy with Doptm2 in heterogeneous models.

Two Half-Spaces Separated by a Planar Interface

Let c1 be velocity in the half-space, where the plane
wave is radiated, c2 velocity in the half-space, where the
transmitted wave is observed, and c1 � c2. In the numerical
simulations c1 � 3464 m/sec and c2 � {2310.0, 1819.1,
1328.2, 837.3, 346.4} m/sec were used. The corresponding
velocity contrasts are c1/c2 � {1.5, 1.9, 2.6, 4.1, 10.0}. Den-
sities were q1 � 2700 kg/m3 and q2 � 2500 kg/m3.

The interface is located midway between two grid
points (see Fig. 6). Note that such a position of the interface
is not necessary; the interface could be placed anywhere. We
chose the interface position in-between two grid points (i.e.,
not at a grid point) to demonstrate the capability of the het-
erogeneous schemes based on the approach by Moczo et al.
(2002) to sense the position of the interface in the grid.

In all three schemes the wave is radiated in the half-
space with c1 at a distance of 6.5 grid spacings from the
interface that is the minimum distance in the Alterman-Karal
radiation (1968) applied in the 4th-order staggered-grid
scheme.

In principle we could consider a timestep in each of the
two half-spaces,
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Figure 5. The envelope and phase misfits, EM and PM, as functions of N shown
for p � {0.20, 0.95} at two travel distances of 10kDOM and 20kDOM.

hiD t � p c ; i � {1, 2}, (39)i i ci

with c, coefficient corresponding to a particular FD scheme,
and pi , stability ratio (fraction of the timestep). If the same
spatial grid spacing,

k c cMIN 2 2h � � , (40)
N N � fMAX

is used in the whole model, then

1 c 12D t � p c , D t � p c . (41)1 1 2 2N � f c N � fMAX 1 MAX

If the same timestep, obviously determined by c1 (�c2), is
used in the whole model, then

1 1 c1
� , (42)

p p c2 1 2

which means that for a fixed p1, fraction p2 of the timestep
in the c2-half-space decreases with velocity contrast c1/c2.

Receivers were located in the c2-half-space. The first
receiver was at a grid point located half-grid spacing from
the interface. Other receivers were at distances {1,2, . . .,20}
� kDOM (c2) from the first receiver.

Figure 7 shows envelope and phase misfits for three of
the five calculated velocity contrasts: 1.5, 4.1, and 10.0. In
the numerical calculations p1 � 0.95 was used. The obser-
vations can be summarized as follows.

Error at the Interface

For a given N the envelope misfit of each scheme at the
interface weakly grows with c1/c2. The phase misfit is con-
siderably smaller in all cases.
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Figure 6. Configuration of a model of two half-
spaces. Only grid points for displacement are shown.

Directly at the interface, there is no dramatic difference
apparent between Dconv2 and Doptm2 in the considered
range of N. This indicates that it is the boundary condition
and its numerical approximation that primarily determines
the error at the interface.

The error of DSstag4 for N � 10 is approximately com-
parable to the errors of Dconv2 and Doptm2. The envelope
misfit of DSstag4 for N � 10 is relatively large and, for
example, for N � 5 is considerably larger than that of
Dconv2 and Doptm2 for N � 10. At the first sight this might
be surprising given the formal 4th-order accuracy of the
DSstag4 scheme. In fact, this is not surprising. The use of
N � 5 in DSstag4 means that the spatial derivative is eval-
uated over six times larger spatial extent than in the case of
N � 10 in Dconv2 or Doptm2. Because it is the boundary
condition that controls the error at the interface, the larger
spatial extent of the DSstag4 operator cannot improve the
accuracy at the interface. It is just opposite.

Figure 8 shows results for the same configuration as
Figure 7 except the material parameterization: instead of the
integral harmonic averaging of elastic moduli, equation (10),
the integral arithmetic averaging of elastic moduli is applied.
It is obvious that the arithmetic averaging yields consider-
ably larger phase misfits than the harmonic averaging. This

is because, as shown theoretically by Moczo et al. (2002),
the arithmetic averaging is wrong in the 1D case.

Error Away from the Interface

Due to grid dispersion the error of Dconv2 dramatically
increases with distance and decreasing N. The increase is
steeper for larger c1/c2. This is easy to understand. As is well
known (e.g., Alford et al., 1974; Marfurt, 1984), grid dis-
persion of Dconv2 increases with decreasing p. As shown,
in the model of two half-spaces p2 decreases with c1/c2.

Note that in the case of the arithmetic averaging of
elastic moduli, the error of Dconv2 as a function of distance
is not monotonic. This is likely because the arithmetic av-
eraging causes at the interface a time shift with a sign op-
posite to that caused by grid dispersion in the c2-half-space.

The increase of the error of Doptm2 is almost negli-
gible.

For a given small N and a given distance the error of
DSstag4 is not a monotonic function of c1/c2. The error first
decreases, then increases with c1/c2. The error of DSstag4 in
the case of a very small c1/c2 dramatically increases with
distance even for, for example, N � 10. The two latter fea-
tures can be explained by the dependence of grid dispersion
of DSstag4 on p. As already shown, p2 decreases with c1/c2.
In the case of the homogeneous unbounded medium, we saw
that the error is largest for p � 1, decreases down to some
minimum and then increases again with decreasing p. A con-
clusion for DSstag4 is that in a model with a small velocity
contrast the error in the slower medium can be very large
because of grid dispersion. It can be reduced by using an
adjusted, sufficiently small value of the stability ratio, p1 in
our notation, for a chosen N.

Recall Figure 4 that shows curves of minima of the en-
velope misfit, phase misfit, and sum of the two misfits as
functions of N and p, that is, EM(N, p), PM(N, p), and EM(N,
p) � PM(N, p). The use of the curves in a homogeneous
medium is simple: for a chosen N such p is taken for which
EM(N, p) � PM(N, p) takes the minimum value.

In our problem of two half-spaces with c1 � c2 we are
interested in reducing grid dispersion in the half-space with
c2. We can therefore consider such p2 for which the error
takes the minimum value. According to equation (42), p1

would be

c1p � p . (43)1 2 c2

Because, however, p1 � 1, we can, in fact, consider only
such p2 for which

c2p � . (44)2 c1

In our numerical examples shown in Figure 7, c2/c1 � {1/
1.5, 1/4.1, 1/10.0} � {0.67, 0.24, 0.10}. This means, that
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we can adjust values of p1 for all values of N in the case of
c2/c1 � 1/1.5. In the case of c2/c1 � 1/4.1 we can only
adjust p1 values for N � 8. This is because for N � 8 the
value of p2 obtained from the minimum curve would yield
p1 � 1. Therefore, we take p1 � 0.99. In the case of c2/c1

� 1/10, due to high-velocity contrast, it is not possible to
adjust the value of p1 for any N.

The modified values of p1 used for the two cases are
shown in the rightmost panel of Figure 9. Misfits of the
DSstag4 calculations with adjusted p1 values are shown in
the left and center panels of Figure 9 for c1/c2 � 1.5 and
c1/c2 � 4.1, respectively. Comparing misfits for c1/c2 � 1.5
in Figures 7 and 9 we can see that the use of adjusted values
of p1 considerably improved accuracy. On the other hand,
there is practically no improvement in the case of c1/c2 �
4.1 because, due to condition (44), there was no adjustment
of p1 possible for values of N for which the error is large.

Thus, the cases of c1/c2 � 4.1 and c2/c1 � 1/10 clearly
show that improvement of accuracy in DSstag4 is not always
possible by adjusting the p1 value. The improvement is only
possible by using sufficiently large N.

It can be seen from Figures 7 and 9 that at least N �
10 should be used in DSstag4 despite the fact that DSstag4
formally is the 4th-order accurate in space. Since the effect
of grid dispersion is cumulative, N should increase with the
travel distance.

Interior Gradient Layer

Consider an interior layer in a homogenous space with
velocity c1. The upper and lower boundaries of the layer are
at zU and zL, respectively, and zL � zU. The velocity inside
the layer is given by

c � c 2p1 2c (z) � c � 1 � cos (z � z ) , (45)1 U� � ��2 H

where H � zL � zU. The minimum value of c(z) � c2 is in
the middle of the layer whereas c(z) � c1 is at the upper and
lower boundaries of the layer. The layer thickness H is found
from the condition

zL

dz 1
2 � . (46)� c (z) fDOM

zU

The obtained thickness is . N is definedH � c c 	2 f
 1 2 DOM

by equation (40). The reference solution for the model of
interior gradient layer was calculated by using the analytical
solution (27) for a stack of thin homogeneous layers. Figure
10 (left panel) shows convergence of the solution. As a ref-
erence solution for evaluation of the misfits of the FD
schemes we used the analytical solution with 5000 layers.

In all three schemes the wave is radiated in the half-

space with c1 at distance of six grid spacings from the lower
boundary of the layer.

The envelope and phase misfits of the three FD schemes
are shown in the middle panel of Figure 10. The errors of
Dconv2 and Doptm2 are similar. This is likely because the
travel distance inside the layer is small enough to render
negligible the error due to grid dispersion which, as was
demonstrated, is significantly larger in Dconv2. The error is
due more to material heterogeneity than to grid dispersion.
The largest errors are in the middle of the layer; this is con-
sistent with the position of the largest amplitude of the fun-
damental mode excited in the layer. Given the relative com-
plexity of the medium, the two schemes yield plausible
results.

The error of DSstag4 is considerably larger than that of
the two other schemes. A likely explanation for this is the
spatial extent of the 4th-order operator that is relatively large
portion of the layer thickness in the case of small N; while
that portion is used to approximate the spatial derivative at
its central point, the medium changes considerably all the
way along that portion.

The right panel of Figure 10 shows the envelope and
phase misfits of the schemes with the arithmetic averaging
of moduli used instead of the harmonic averaging. It is ob-
vious that the arithmetic averaging yields considerably
worse results. The numerical solutions do not converge to
the reference solutions in the considered range of N.

Conclusions

We presented a heterogeneous FD scheme, Doptm2,
based on the application of the optimally accurate operators
developed by Geller and Takeuchi (1998) to the heteroge-
neous strong formulation of the equation of motion devel-
oped by Moczo et al. (2002) for the 1D problem. We nu-
merically compared Doptm2 with two other schemes:
Dconv2 based on the application of standard conventional
2nd-order FD operators to the heterogeneous strong displace-
ment formulation of the equation of motion for the 1D
problem, and DSstag4 based on the application of the
staggered-grid 4th-order operators to the heterogeneous
strong displacement-stress formulation of the equation of
motion for the 1D problem.

The numerical comparisons were performed for three
types of models: homogeneous space, two half-spaces in
contact, and an interior layer with a strong velocity gradient.
The accuracy of the numerical solutions was quantified by
evaluating the envelope and phase misfits with respect to the
exact analytical solutions.

The main conclusions are summarized as follows.

Grid dispersion in a homogeneous medium:

• The error of Dconv2 (identical with DSstag2) considerably
increases with distance because of grid dispersion (except
for the theoretical limiting case of p exactly equal to 1,
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where the scheme is accurate); the error can be reduced
by drastic increase of the number of grid spacings per
wavelength (N) and using the maximum possible stability
ratio (p).

• The error of DSstag4 grows considerably with distance for
small N and large p; for a chosen N the error can be re-
duced by using sufficiently small p that EM(N, p) �
PM(N, p) takes the minimum value.

• The error of Doptm2 is negligible compared with those of
Dconv2 and DSstag4.

• Despite the formal 4th-order accuracy of DSstag4, for p �
0.95 the errors of both DSstag4 and the 2nd-order accurate
Dconv2 as functions of N have the same convergence rate,
�2, whereas that of Doptm2 is �4.

• While adjustment of the stability ratio p value in DSstag4
is possible in the homogeneous medium (at a price of a
small fraction of the maximum possible time step), it is
not possible in general in the heterogeneous medium.

Error at the interface:

• The error at the interface is primarily controlled by the
boundary condition and its numerical approximation.

• The error weakly grows with the velocity contrast.
• The 4th-order of DSstag4 does not improve the accuracy

compared with the 2nd-order schemes.
• The arithmetic averaging of elastic moduli yields signifi-

cantly lower accuracy than the harmonic averaging.

Error away from the interface:

• For a given N the error of DSstag4 can be reduced by using
an adjusted small value of p (and thus small fraction of
the maximum possible timestep) only in the case of suf-
ficiently small velocity contrast; in the case of moderate
or large velocity contrast the error can be reduced only
using sufficiently small spatial grid spacing,

• Despite the formal 4th-order accuracy of DSstag4, the spa-
tial sampling criterion cannot be weaker than that of the
formally 2nd-order accurate Doptm2.

Error inside the strong velocity gradient layer:

• The errors of Dconv2 and Doptm2 are comparable, the
error of DSstag4 is larger mainly for small N (i.e., larger
grid spacings).

The general conclusion is that Doptm2, that is the scheme
applying Geller and Takeuchi’s (1998) 2nd-order optimally
accurate operators to the strong heterogeneous formulation
of 1D equation of motion of Moczo et al. (2002), is signifi-
cantly more accurate than the schemes based on the appli-
cation of the conventional 2nd-order and staggered-grid 4th-
order operators.
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