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Abstract

Common kinematic strong motion modeling techniques can be divided into in-
tegral and composite according to the source representation. In the integral ap-
proach, we usually consider the rupture propagating in the form of a slip pulse,
creating the k-squared final slip distribution. Such a model is acceptable on
large scales where the faulting process is assumed to be deterministic, which is
also supported by low-frequency slip inversions. Nevertheless, on small scales the
real rupture is rather disorganized (chaotic) and requires a stochastic description.
This is involved in the composite approach, in which the source acts as a dis-
crete sequence of individually rupturing subevents. However, this model usually
leads to incorrect spectral amplitudes in the low-frequency band (as compared
to the integral model). The purpose of this study is to propose a hybrid kine-
matic k-squared source model based on a set of subsources, scaled to provide
the k-squared slip distribution. The modeling combines 1) the integral approach
at low frequencies, based on the representation theorem and the k-squared slip
distribution (obtained by composing subsources slip contributions), and 2) the
composite approach at high frequencies, based on the summation of ground mo-
tion contributions from the subsources, treated as individual point sources. The
same set of subsources is used in both the approaches, i.e. for both the frequency
ranges. The hybrid method is numerically efficient, while minimizing the above-
mentioned problems of both the techniques. The source model is applied to two
events: 1999 Athens (M,,=5.9) and 1997 Kagoshima (M,,=6.1) earthquake ex-
amples. In the first example, the simulated PGAs are examined with respect to
the attenuation relation for Greece. In the second example, synthetic velocigrams
are compared with observed data showing that, despite the neglected site-effects,
the complexities of measured waveforms are relatively well reproduced.
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Introduction

Strong ground motion seismology plays a key role in mitigating possible damage
caused by earthquakes in active regions. Seismic engineers need, as an input,
broadband (0 — 20 Hz) synthetic seismograms at small (< 100 km) source dis-
tances. Simulation techniques that provide such data have to take into account
finite-extent source models to characterize the key features of ground motions
from large earthquakes (e.g., source directivity).

There are various kinematic approaches to the representation of the rupture
processes on an extended fault (Hartzell et al., 1999). The approaches can be
divided into four groups:

Integral. In this approach one prescribes the main kinematic properties of the
fault, which would generate the widely observed w-squared spectrum (Andrews,
1980 and 1981, Bernard et al., 1996, Gallovi¢ and Brokesovd, 2004). The radiated
wavefield is then simply calculated using the integral in the representation the-
orem, which requires the computation of Green’s functions in a relatively dense
grid of points over the fault.

Composite. The source process is represented by relatively few segments, so-
called subevents or subsources. Each subsource is characterized by its source time
function (or its parameters, such as the seismic moment, corner frequency, etc.)
Contributions of subevents are summed and the resulting wavefield is filtered
in order to obtain the proper seismic moment and spectral shape of the source
function corresponding to the whole earthquake. This approach often utilizes the
Empirical Green’s Function (EGF) method where an aftershock is taken as the
record of the small rupture, but the analytic Green’s function can be used as well.
More about composite modeling can be found in the papers by Frankel (1991),
Irikura and Kamae (1994), Zeng et al. (1994) and others.

Stochastic. One directly prescribes an envelope of the modeled seismogram
to correspond to a given earthquake (in terms of, e.g., seismic moment, corner
frequency, duration, etc.). The high frequencies are then generated in a purely
stochastic way, for example, as white noise (Boore, 1983). The main problem is
that this modeling approach has nearly no physical background so that we do
not consider it here.

Hybrid combination of the above approaches. This combination can be
constructed in various ways (Beresnev and Atkinson, 1997, Pacor et al., 2005,
etc.). Some of the methods (e.g., Hartzell et al., 1999 and 2005) utilize integral
and composite approaches for low frequency and high frequency bands, respec-
tively. However, in previous studies the integral and composite models in the
hybrid approach are unrelated, which can lead to improper spectral matching in
the cross-over frequency zone. The aim of this paper is to propose a hybrid model
with related low- and high-frequency models.

Let us start with a relatively simple, integral, kinematic, finite-extent source
model as used by Gallovic and Brokesovd (2004). The source is represented



by a rectangular fault, along which a radial rupture front propagates from a
nucleation point at a constant velocity. At a point through which the rupture
front passes, a slip starts to evolve during a time interval equal to rise time 7. At
time 7 the slip reaches its maximum value and then remains constant. The final
(maximum) slip varies along the fault and has a k-squared distribution (Bernard
and Herrero, 1994, Gallovi¢ and Brokesovd, 2004). This means that the decay
of the slip wave-number amplitude spectrum is proportional to k=2 (k being the
radial wave number) for large wave numbers and its phase is random. It can
be shown (Gallovi¢ and Brokesovd, 2004) that such a slip distribution results in
desirable w-squared source spectrum provided that rise time 7 is wave-number
dependent. More specifically, 7 = 7,4, is constant up to a certain wave-number
ko and then decreases linearly with increasing k > ko (for details see Bernard
et al., 1996 and Gallovi¢ and BrokeSovd, 2004). At a given time, faulting thus
appears in a strip bounded by the rupture front on one side and by the healing
front (given by the maximum rise time 7,4, ) on the other side. Thus, the rupture
propagates along the fault in the form of a slip pulse (Heaton, 1990).

Strong ground motions, generated by such a source model, are calculated
according to the representation theorem by computing the well-known surface
representation integral along the fault. Assume a rupture described by pure shear
dislocation Awu(t, £) along fault ¥, ¢ and & being the time and the position along
the fault, respectively. For a receiver at position 7, the representation theorem
reads (e.g., Aki and Richards, 2002)

wilr,£) = / / Gy, 1, €) % 11, €)dS(E), 1)

Myq(t,&§) = p (1pAug(t, §) + veAuy(t, §)) (2)
where wu; is the i-th component of ground displacement, v the unit normal to
the fault. Quantities G and m are Green’s tensor and moment tensor density,
respectively. The comma in the suffix indicates the spatial partial derivative
with respect to & (i.e. G;p, = 0G;,/0¢,) and * denotes time convolution. The
k-dependent rise time is introduced in Awu(t, &) (Eq. (2)) by means of the formula
introduced in Gallovié and Brokesovd (2004).

Numerically, the fault is discretized, and the representation integral is replaced
by a sum, so that the finite extent source is represented as a superposition of point
sources distributed regularly along the fault with the spacing small enough to
avoid numerical problems in the integral evaluation. It is clear that this procedure
could require a large numerical effort for high frequencies due to the necessity of
a dense fault discretization.

On large scales (i.e. large spatial wavelengths), the source model explained
above is acceptable since it is assumed that the faulting process can be described

deterministically. This is also supported by the low-frequency slip inversions
(e.g., Hartzell and Heaton, 1986, Wald et al., 1996, Asano et al., 2005). On
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the other hand, although the model seems to be complicated in terms of the
stochastic component in the slip phase spectrum at small wavelengths (Herrero
and Bernard, 1994), it is likely too simple to represent actual source behavior
at small wavelengths. Due to the presumably heterogeneous distribution of dy-
namic and geometric rupture parameters on small scales, the rupture is expected
to be disorganized (chaotic, being a non-linear and incoherent process). Conse-
quently, the integral description may not be well justified from the physical point
of view on low scales. Moreover, the integral approach may become numerically
too expensive when computing up to high frequencies. Note that the relative
simplicity of the integral k-squared rupture model (in terms of homogeneous rup-
ture propagation) can contribute significantly to a strong directivity effect, which
is hardly observed especially at high frequencies (Joyner, 1991, Bernard et al.,
1996, Gallovi¢ and Burjdinek, 2006).

Andrews (1981) has developed a complex integral stochastic model that in-
cludes the chaotic short-scale rupture evolution. A possibly more practical ap-
proach (simply tractable and computationally more efficient) is to utilize the
composite model, in which the source acts as a discrete sequence of individually
rupturing subevents. This approach has to be understood as a phenomenolog-
ical source representation describing average source behavior!. Note that the
composite approach has been successfully applied in the high-frequency model-
ing of ground motions (Irikura and Kamae, 1994, Frankel, A., 1995, Roumelioti
et al., 2004, etc.). Regarding long spatial wavelengths (where the source behav-
ior is rather deterministic), the composite approach does not take into account
spatial variations of Green’s functions over a given subsource when evaluating
low-frequency ground motions. Moreover, most of the composite techniques
require artificial filtering in order to enhance the low-frequency content of the
synthetics (to match the seismic moment of the modeled event, e.g., Frankel,
1995). Consequently, the composite methods do not correctly model the coher-
ent low-frequency pulses that may control the period, duration, and amplitude
of near-fault ground motions at frequencies shorter than about 1 sec.

Let us summarize: while the integral approach is more suitable for short-scale
source description (correctly modeling possible low-frequency ground motions),
the composite model represents the short-scale source behavior better (being
numerically effective and successful in modeling high-frequency seismograms). To
retain the advantages of both the methods, we propose a new, hybrid k-squared,
kinematic, finite-extent source model applicable on both large and small scales,
providing a w-squared source spectrum. The subsources in the composite part
are constrained to provide a spatial slip amplitude spectrum decaying as k=2 for
large k’s (similarly to the integral model explained above).

!The composite approach can also be understood to incorporate (in addition to the complex
source effects) short-wavelength effects of complex wave propagation as well, so that even in
high-frequency computations relatively simple Green’s functions can be employed instead of
much more complex ones.



Source description — key ideas

In the hybrid model presented, we decompose the faulting process into slipping on
individual, virtual, overlapping subsources of various sizes, distributed randomly
along the fault. A similar decomposition is inherent to the composite approaches
(see, e.g., Hartzell, 1978, Irikura and Kamae, 1994, Zeng at al., 1994, Frankel,
1995, Beresnev and Atkinson, 1997). However, in our hybrid model the same set
of subsources is used even in the integral calculations. The specific computational
realization of the set of subsources is different in previous studies (rectangular, cir-
cular, overlapping, non-overlapping, etc.) These features follow from the adopted
source model concept. In our hybrid k-squared source model, the assumption of
the k-squared slip distribution along the fault is essential, implying the relation
between the subsources’” mean slips and their number-size distribution. Andrews
(1980) has shown that subsources with a number-size distribution described by
a power law with fractal dimension D = 2 and with mean slips proportional to
their dimensions (so-called constant stress-drop scaling) compose the desired k-
squared slip distribution. Note that Zeng et al. (1994) assumed the same scaling
properties of the subsources, however, the authors did not take advantage of this
consequence. It is intrinsically assumed that the source model is self-similar in
that sense that the individual subsources are also, like the whole fault, composed
of smaller subsources having thus also the k-squared slip distribution. We do
not simulate this explicitly (by summing ”subsubsource” slip contributions), we
only directly prescribe a k-squared slip distribution for each of the individual
subsources.

We assume that the subsources contribute differently to the wavefield at dif-
ferent spatial wavelengths. On large scales, the subsources (of all dimensions) act
so that the fault motion is equivalent to the integral k-squared model discussed
above. The final slip at a point on the fault is given by the sum of the slip
contributions from the individual subsources overlying the point. The subsources
compose rupture propagating at a constant velocity over the whole fault and the
slip increases with a given (k-dependent) rise time, so that the rupture process is
concentrated in a slip pulse of constant width propagating at a constant rupture
velocity along the fault. The generated wavefield is (by definition) the same as
that of the integral k-squared model in which the contributions from different
source points along the fault sum coherently.

On small scales, the situation is different. The behavior of subsources is
assumed to be chaotic. The rupture process is likely too complicated to be de-
scribable by a relatively simple space-time distribution of slip function Aw (e.g.,
by the use of a single distinguished rupture front). An intuitive idea of such
source behavior on small scales can be gained from the snapshot illustrating the
slip velocity field in Fig. 1. Instead of attempting to simulate the particular
subsource behavior, which may be rather complex, we assume that the radiated
high-frequency wavefield w¥'(r,t) of a given subsource s can be effectively ap-



proximated by
uf(r t) = C(r,t,&,) * Q(t) (3)

/ Ai(t, €)d (4)

where C' comprises the propagation effects and radiation pattern, &, denotes
a given point in the subsource (usually its center) and ¥, is the subsource’s
surface. We call 24(t) the source time function. Slip rate function A, describes
the partial evolution of the rupture on the given subsource. Being presumably
complex and disorganized, evolving chaotically in all directions, we can assume
that, effectively, the radiation of the high-frequency wavefield is isotropic and that
its origin is point &, on the subsource. Thus, the resulting source time function of
the individual subsource is independent of the receiver position and, consequently,
the directivity effect vanishes. In this way, the subsources act as individual point
subevents and they are equivalent to randomly distributed point sources (as in
the composite approach). Note that due to the random subsource position, the
subsources’ wave-field contributions sum incoherently. In the composite part of
the hybrid model we prescribe directly €(t), characterized by seismic moment
ms and corner frequency f¢ of a given subsource s. More specifically, in this
paper, we assume Brune’s source time function which, in the spectral domain,
ms

reads
T/ ?

where the symbol i represents the imaginary unit. The choice of quantities m
and f¢ is discussed in the next section.

Let us discuss briefly the spatial wavelength dividing the deterministic and
chaotic description of the rupture and its relation to the slip pulse width. Beroza
and Mikumo (1996) address the presence of the slip pulse to the dynamic stress
drop heterogeneity. Whatever the cause of the stress drop heterogeneity, in the
source model it introduces characteristic length scales much smaller than the
overall dimensions of the fault, which in turn leads to relatively narrow slip pulses.
We suppose that the same dynamic process causes the rupture to become chaotic
on small scales. Consequently, the slip pulse width should be somehow related to
the spatial wavelength dividing the deterministic and chaotic description of the
rupture. A more profound analysis of this phenomenon is beyond the scope of
the present paper. For simplicity, we assume that the slip pulse width is about
the same as the dividing wavelength. However, note that this assumption is only
tentative. If future studies show that the two spatial wavelengths are different,
the hybrid k-squared model will still hold after a straightforward modification.

QS(f) =



Computational realization of the source model

Before starting computations it is necessary to develop a subsource database,
which includes their positions along the fault, dimensions, mean slips (and con-
sequently seismic moments) and corner frequencies. Let the fault be a rectangle
of dimensions L x W. Subsource dimensions are taken as integer fractions of
L and W, i.e. the subsource length is [, = L/n and its width is w, = W/n.
Henceforth, we call the integer n the subsource level. The levels range from n,,;,
tO Mpaez. At each level all subsources are assumed to be identical in dimensions,
mean slip and corner frequency, while their position is generally random (with
possible exceptions at the lowest levels, see below).

The database is developed in the following way:

e The number of all the subsources at levels < n, i.e. of size [,, xw,, and larger,
is n? (given by the assumed fractal dimension D = 2 of the number-size
distribution). More specifically, the number of subsources N(n) at level n
can be obtained as the difference between the number of all the subsources
up to level n and up to level n —1,i.e. N(n) =n*—(n—1)> =2n—1. The
subsource at level 1 corresponds to the whole fault.

e The positions of the subsources are assigned generally randomly (the sub-
sources may overlap) unless constraints, if any, apply. For example, the
evidence of clear asperity in the slip inversion result may constrain the
positions of the lowest-level subsources to be fixed.

e The mean slip for the subsources at level n is given by Aw,, = ¢,/n (obtained
from the constant stress-drop assumption). In this way, the average slip is
proportional to the subsource dimension. The constant of proportionality
Cu, assumed to be independent of n, is obtained by matching the seismic
moment of the whole earthquake to the sum of the moments of all the
subsources at levels from 7,5, 0 Tmaz.

e The corner frequencies f° of the subsources at level n are considered to
be inversely proportional to the subsource dimension (and, consequently,
the subsource duration), i.e. f¢ = c¢yn. The reciprocal of ¢y, considered
independent of n, is comparable to the duration of the whole earthquake.
There are several ways of constraining the value of ¢;. It can be found, for
example, by comparing the synthetic PGAs with the local attenuation rela-
tions (see numerical examples) since f¢ controls the high-frequency spectral
level of the synthetics. Alternatively, if the attenuation relations are not
available and the aim is to model observed data, c; can be estimated as
the reciprocal of the event duration and then adjusted by comparison with
observed seismograms. If the aim is prediction of a future event and there
are no attenuation relations for the area under study, c¢; can be set up by



constraining the high-frequency spectral level of the whole earthquake (as-
suming incoherent summation of the subsources’ contributions) by means
of an empirical relation between the corner frequency and the earthquake
magnitude. Note that, if even this relation is unknown, the empirical rela-
tion can be substituted by the relation following from a considered dynamic
model, e.g., Brune’s model (Brune, 1970).

We use two methods for strong motion synthesis in two different frequency
ranges. Let us assume two bounding frequencies fi, fo, with f; < fs. For
frequencies up to f; we use the integral approach and for frequencies larger than
f1 the composite approach. In order to simulate smooth transition between the
deterministic and chaotic style of faulting, we combine the computed synthetics
in the Fourier domain in the cross-over frequency range between frequencies f;
and fs, as illustrated in Fig. 2. For both the real and imaginary parts of the
spectrum, we apply weighted averaging by using the sin?(z) and cos?(x) weighting
functions, where x = %% (see also Mai and Beroza, 2003). Frequencies f; and
fo are in fact free parameters making the hybrid model as general (robust) as
possible. The choice of f; and f; is discussed in the section Numerical examples.

Concerning the low-frequency (up to fo) computation according to the repre-
sentation theorem (Eq. (1)), we discretize the fault densely enough to compute
the integral correctly up to frequency f,. The static slip at a point is given by the
sum of static slips of all the subsources from the database that contain the point
(assuming generally k-squared slip distribution on each individual subsource, see
above). An example of the slip distribution constructed in this way is shown in
Fig. 3. The figure also shows that the proposed procedure provides a k-squared
slip model. The rupture time is given by the distance of the point from the nu-
cleation point assuming constant rupture velocity v,. Slip velocity function Au
is assumed to be Brune’s pulse, with, generally, k-dependent rise time 7. The
spectrum of the pulse has the same form as that in Eq. (5), where Q4(f), ms
and f¢ are to be replaced by Au(f), mean slip and 1/7, respectively. Note that
the maximum rise time 7,,,, defines the slip pulse width as Ly = v,Tpez. In
certain cases, if 1/7,,4, falls in the cross-over frequency range, the rise time can
be specified as constant.

In the high-frequency range (above f;), the composite approach is utilized.
The subsources from the database are treated as point sources (Eq. (3)) with
Brune’s source time functions (Eq. (5)), approximating the average radiation
from the subevents rupturing rather chaotically (see above). The subsources’
seismic moments and corner frequencies are obtained directly from the database.
The rupture time is given by the time the rupture takes to reach the subsource’s
center (assuming the same constant velocity v, as for the integral approach).

The introduced source model can be combined with any method providing
Green’s function. In this paper we use the ray theory (more precisely direct
S-waves only) and the discrete wave-numbers method (Bouchon, 1981).



Numerical examples
Athens earthquake

The hybrid approach described above is used for modeling the PGAs generated by
the 1999 Athens earthquake. The results from the hybrid model are compared to
those obtained by the purely integral k-squared rupture model (with k-dependent
rise time) and the purely composite model. The models share the same subsource
database in order to compare their results properly. Since this earthquake is
predominantly unilateral, we can expect different results from the two models
implied by different amounts of directivity at high-frequencies.

The basic parameters of the Athens earthquake model are based on previous
studies ( Tselentis and Zahradnik, 2000, Roumelioti et al., 2003). They are listed
in Tab. 1. For the earthquake location and mechanism see Fig. 4. We assume
that the rupture propagates radially at constant rupture velocity v, from a nu-
cleation point that corresponds to the hypocenter given by NOA: 38.08° N and
23.58? E. The maximum rise time is equal to 1 sec in both the hybrid and purely
integral model.

The slip model is based on the inversion result by Roumelioti et al. (2003).
By visual inspection one can characterize it by two asperities (one of a high
and the other of a low slip contrast), see Fig. 5. Both are located in the left
part of the fault, the high- and low-contrast asperity being situated down- and
up-dip from the hypocenter, respectively. To account for such a particular slip
(subevent) distribution, we neglect the subsource at level n = 1 that would be
of the dimension of the whole fault. The three subsources at level n = 2 are
placed to the left of the fault (two of them at the top and one at the bottom) to
simulate the asperities. An example of one realization of such slip distribution is
shown in Fig. 3. The corresponding slip contrasts of the high- and low-contrast
asperities are, approximately, 2x and 1x the mean slip of the whole earthquake
model, respectively.

Let us discuss the choice of bounding frequencies f; and f,. According to
our tentative assumption that the slip pulse width and wavelength dividing the
deterministic/chaotic rupture behavior are about the same (see above), the cross-
over interval should be spread around the so-called dividing frequency, being
equal to the reciprocal of the rise time (i.e. 1 Hz in our case). Another practical
assumption (not based on the tentative consideration) may be, for example, that
the dividing frequency equals the highest frequency used to obtain reliable results
in kinematic slip inversions (utilizing implicitly the integral approach). In the
case of the Athens earthquake slip inversion by Roumelioti et al. (2003), the
highest frequency is (also) 1 Hz. Regarding the width of the cross-over range (i.e.
fi and f5), we define it, to advantage, relatively to the dividing frequency by
a multiplicative factor (note that this choice is user-dependent). Our particular
choice of the factor of 2 (i.e. f; = 0.5 Hz and f, = 2 Hz) is based on our experience
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that this range is large enough not to result in a significant step between the low-
and high-frequency spectral levels on the log-log plot. Based on our numerical
testing, slight changes of these frequencies do not affect the results considerably.

We consider the crustal model, called MA, used in modeling of the regional
data by Tselentis and Zahradnik (2000). This 1D structural model consists of
the homogeneous layers described in Tab. 2. The uppermost 1 km low-velocity
layer is partly confirmed by, e.g., the surface waves dispersion study (see Novotnij
et al., 2001).

Green’s functions are computed using the standard ray theory (Cerveny,
2001). In this part, we restrict the computations to direct S waves only since
they are considered to be dominant for PGAs at epicentral distances of our in-
terest (< 30 km). This restriction is quite common in many papers (e.g., Hanks,
1982, Zollo et al., 1997, Emolo and Zollo, 2001 and 2005).

The computer code for 2D ray computations BEAMS7, written by Cerveny
and modified by Brokesovd (1993) to allow for 2.5D computations, is used. Under
the 2.5D computation we understand computation of 3D rays in a 2D medium
(i.e. a medium with properties dependent on the vertical and one horizontal
coordinate). Note that in the 1D medium considered in this study the rays are,
in fact, in-plane, which implies more efficient two-point ray tracing. Nevertheless,
due to the ”arbitrary” source-receiver configuration, the problem is 3D. Moreover,
the extension to 2D structures would be straightforward. For faster computations,
the quantities determining each S-wave (arrival time, real and imaginary part
of its amplitude) are interpolated using bicubic splines, since their changes with
respect to the position along the fault are smooth in our particular crustal model.

The synthetics are band-pass filtered between 0.5 and 10 Hz. The attenuation
effects are approximated by frequency-dependent quality factor Q(f) = 100 f9®
as used also by Roumelioti et al. (2004). The effect of the near-surface attenuation
was also taken into account by diminishing the simulated spectra by the factor
exp(—nkf) (Anderson and Hough, 1984), where k = 0.01 sec as a typical value
for rock sites. No other site effects or topography are taken into account.

As suggested above, we adjust parameter ¢ (for hybrid and purely compos-
ite models) by comparing synthetic horizontal PGAs (maximum of the horizontal
components) with the empirical attenuation curve for Greece (Skarlatoudis et al.,
2003). Fig. 6 shows PGAs plotted as a function of epicentral distance, simulated
by the hybrid method assuming various values of cs. Synthetics are calculated for
112 virtual receivers, spaced regularly every 4 km along 16 profiles running radi-
ally from the epicenter (Fig. 7, top). One can see that ¢y predominantly affects
the overall level of the PGA values, while the scatter remains nearly unchanged.
The best correspondence with the attenuation curve is for ¢; = 1/4 s™! when all
the simulated PGA values fall within the empirical 20 uncertainty bounds.

Fig. 7 (top) shows the mean horizontal PGAs obtained by the use of the
three models from 10 different slip realizations (or, equivalently, distributions of
subsources), with the asperity locations and nucleation point position fixed. At
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the bottom of Fig. 7, all the synthetic PGAs are gathered and plotted versus
epicentral distance and compared with the attenuation curve published by Skar-
latoudis et al. (2003). The attenuation relations provide not only mean values,
but also a measure of their uncertainty (standard deviation o). The scatter in the
published attenuation relations is caused by, e.g., 3D structural effects, includ-
ing site effects, and also by the directivity and radiation-pattern effects varying
with receiver azimuth. We assume that 20 above and below the mean empirical
attenuation curve represent an upper and lower bound, respectively, for the syn-
thetic PGAs. In Fig. 7 (bottom) we can see that, in the hybrid (and composite)
method, the synthetic PGAs are distributed around the mean attenuation curve
and that their scatter is lower than 20 around the empirical mean. The integral
k-squared method has a larger scatter because of the low PGAs at anti-directive
receivers (see Fig. 7 (top)). The strong directivity effect is caused by the coher-
ent summation of contributions from the individual point sources even at high
frequencies, while the hybrid (composite) approach yields weaker directivity due
to the incoherent summation of the subsources’ wavefield contributions.

For illustration, Fig. 8 shows, for 2 selected stations (both 24 km from the
epicenter, one in the forward and one in the backward direction with respect to
the rupture propagation, see Fig. 7 for their positions), a comparison of synthetic
seismograms (displacement, velocity and acceleration) obtained by the three dis-
cussed methods: purely integral, purely composite and their hybrid combination.
In the forward directivity zone, one can see that the displacements (with pre-
dominantly low-frequency spectral content) obtained by the three methods are
nearly the same. On the other hand, at the backward-direction station the purely
composite method yields a narrower pulse with a different amplitude than the
other two methods. This, in consequence, means that this method would not
be able to reproduce correctly the low-frequency directivity effect. With respect
to accelerations (with dominant high-frequency content), the composite method
provides the same waveforms as the hybrid one at both stations. Note that the
directivity effect is very small, in contrast to the result given by the purely in-
tegral model, which is due to different summations (coherent/incoherent) of the
wavefield contributions from the individual subsources. In synthetic velocities,
the spectral content at frequencies around the corner frequency plays a dominant
role. In our example, this region coincides more or less with the cross-over zone,
so that all the three synthetic waveforms differ significantly from one another, es-
pecially at the backward-direction station. Comparing the absolute PGV values
for the two stations, we can see that the strongest directivity effect is provided
by the integral approach while the weakest by the composite model. Note that
the differences are also affected by the choice of the cross-over frequency range.
Although f; coincides with the high-pass filtering frequency (0.5 Hz), the inte-
gral part still plays an important role especially in the first half of the relatively
broad cross-over zone. If the high-pass filtering frequency is lower (< 0.5 Hz),
the synthetics may differ more significantly from one another.
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To show that the hybrid Athens earthquake model is realistic and capable of
reproducing observed strong ground motion data, Fig. 9 compares the synthetic
and observed accelerations for the transverse component at station DMK (see Fig.
7 for its position). The station was selected as the only one installed on hard
rock that can be considered " free-field” (Roumelioti et al., 2004). The transverse
component is assumed to be affected mainly by the SH waves that are involved
in our synthetics. As one can see, the synthetic waveforms vary considerably for
different realizations of the subsource distribution although the asperities position
is fixed. Nevertheless, their overall appearance agrees well with the observed data
in terms of complexity, major peaks and frequency content. In this sense, the
hybrid model is supported by the observation.

Kagoshima earthquake

In this example we demonstrate the application of the hybrid approach to the
March 1997 Kagoshima earthquake (M,, = 6.1), Kyushu, southern Japan. The
earthquake location and mechanism are taken from Horikawa (2001), see Fig.
10. The results are compared with the observed velocigrams recorded by the K-
NET and JMA stations. We restrict our study to 20 stations at relatively short
epicentral distances, less than 50 km, see Fig. 10. The records are band-pass
filtered between 0.2 — 10 Hz.

The Kagoshima earthquake was extensively studied by Horikawa (2001). The
main features of the earthquake are adopted from that paper (see Tab. 1).
Horikawa fixed the nucleation point position in the middle of the strike direc-
tion and at 1/3 of the fault depth range from the bottom. He then found the
relative position of the asperity in the bottom west part of the fault by fitting low-
frequency waveforms using a simple kinematic model. We take the asperity into
account in a similar way (by constraining the position of the largest subsources)
as in the case of the Athens earthquake (see above). We fix both asperity and
nucleation point positions in our computations.

We adopt the crustal model used by Horikawa (2001), see Tab. 3. Green’s
functions are computed using the discrete wave-numbers technique (Bouchon,
1981) for the whole frequency range, so that we obtain the complete wavefield. For
faster computations, interpolation in the frequency domain (of real and imaginary
parts separately) is applied (Spudich and Archuleta, 1987).

The choice of the transition frequency zone f; = 0.5 Hz and f; = 2 Hz
(the same as in the previous example) appears to be suitable for this case as
well. Parameter ¢; = 1/3 s7! is set in order to get general agreement between
the modeled PGA and PGV values and attenuation curves for Japan (Si and
Midorikawa, 1999). Fig. 11 shows the simulated peak values for 5 slip realizations
(open circles) plotted together with the attenuation curve and its uncertainties.
Moreover, the observed PGAs and PGVs are shown (gray circles) to support the
use of the attenuation relation when adjusting c¢;. However, the aim of Fig. 11 is
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not in providing a detailed comparison of peak values at the individual stations.
Such a comparison would require a site-specific treatment.

We assume (similarly to the case of the Athens earthquake) 5 realizations
of the slip (subsources) distribution. The synthetics are band-pass filtered in
the same way as the real records (0.2 — 10 Hz). For several selected stations
(gray-marked in Fig. 10), Fig. 12 shows the comparison between the observed
horizontal velocigrams and all of the 5 corresponding synthetics both in the time
and frequency domains. The stations are selected by visual inspections with the
aim to choose those characterized by a duration comparable with the duration
of the synthetics, i.e. the stations supposedly not being affected much by com-
plex propagation/site effects (which are not taken into account in our Green’s
functions). For illustration, this requirement was deliberately disregarded in the
case of station KGS008. The velocigrams in the time domain are normalized, so
that one can compare peak values (numbers in the figure) and waveform shapes
separately.

The synthetics reproduce the complexity of measured waveforms relatively
well. At stations KGS001, KGS003, KGS005 and KMMO015, the match between
synthetic and observed data is very good in terms of basic shape of the waveform,
duration of the most significant wavegroups, polarity, spectral level and the spec-
tral decay. For certain stations (or components) there is a discrepancy between
the synthetic and observed spectral levels in the range from 0.2 to about 0.5 Hz.
However, this discrepancy does not probably contradict the waveform fitting by
Horikawa (2001) whose inversion relies on lower frequencies (0.1 — 0.2 Hz). Note
that at station KMMO015 one can see a very good fit of relatively complex shape
of the observed Fourier spectrum, although it does not have a simple w-squared
shape. At stations KGS001 and KGS005 synthetic and observed peak values are
about the same, while at KGS003 and KMMO015 they differ by a factor of about
2. In Fig. 10, one can see that these stations are located around the source at
various azimuths and distances of 10 — 30 km.

At station KGS002 the overall shapes (envelope, duration) of the synthetic and
observed records are in good agreement. The synthetic and observed spectra fit
each other well up to about 4 Hz, but for higher frequencies the synthetic spectra
decay considerably faster. This could possibly be caused by high-frequency site
and/or propagation effects. A similar, but much more pronounced discrepancy
in the behavior of the high-frequency spectrum can be seen in the case of station
KMMO018 to which the waves propagate partly through sea water (see Fig. 10).
At station KGS004, the real data and synthetics are in relatively good agreement
in the time domain. In the frequency domain, there is a remarkable amplification
in the observed spectra at frequencies between about 0.3 —1.5 Hz, not reproduced
in the synthetics. We attribute this to a possible resonant site-effect not included
in our computation. Moreover, beyond the resonant amplification, the synthetic
spectral amplitudes are higher than the observed ones. At station KGS008 (Fig.
12) strong site-effects are clearly seen in the time domain. They are manifested
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mainly by the longer duration of the observed waveforms with a prevailing fre-
quency of about 1 Hz. In the frequency domain this feature is manifested by
higher observed spectral amplitudes around 1 Hz. At frequencies higher than
1 Hz, the agreement between observed and synthetic amplitude spectra is again
good.

Discussion and conclusions

We present a hybrid source model composed of individual overlapping subsources
distributed randomly along the fault. In general, this model is suitable for both
integral and composite source descriptions. The spatial wavelength dividing these
two source representations is, in general, a subject of choice. We hypothesize that
the realistic choice of the dividing wavelength is comparable to the slip pulse
width. This assumption has to be justified by advanced source studies (dynamic,
experimental, etc.) and/or systematic modeling of strong ground motion data.
Nevertheless, if such studies show that the dividing wavelength and the slip pulse
width differ considerably, the hybrid k-squared model will still be applicable,
only frequencies f; and fy will have to be chosen accordingly. Note that it is
also possible to set the dividing wavelength equal to the maximum wavelength
considered, thus obtaining a purely composite approach, very similar to the model
of Zeng et al. (1994). On the other hand, setting the dividing wavelength equal to
the minimum wavelength, one obtains a purely integral model that is equivalent
to the kinematic k-squared model of Bernard et al. (1996) and Gallovi¢ and
Brokesovd (2004) if combined with a k-dependent rise time. We should emphasize
that the desirable w-squared source spectrum is obtained in any case.

Let us discuss what our proposed model implies for slip velocity functions over
the fault. In the hybrid model, their spectral content can be divided into two
ranges. At large wavelengths (and, consequently, low frequencies) their shape is
deterministic (i.e. relatively smooth), given by the propagating slip pulse. At
small wavelengths (high frequencies) their shape is perturbed by stochastic con-
tributions from the chaotic faulting style. The construction of such slip velocity
functions is left to future studies. However, we expect they would mimic those
introduced by Andrews (1981).

Our modeling results for the particular case of the 1999 Athens earthquake
show that the hybrid approach predicts directivity in correspondence with obser-
vation (attenuation relations) in terms of the PGA scatter. The second example,
the 1997 Kagoshima earthquake, shows that, despite the neglected site-effects,
the model reproduces the complexity of measured waveforms relatively well. Note
that in the presented numerical examples information from kinematic slip in-
versions (defining the positions of asperities) is used in order to constrain the
low-frequency part of the spectrum. In certain applications (simulations for hy-
pothetical earthquakes, scenario studies) such information may not be available.
In such situations one can leave the subsources at level 2 random. Note that in
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our particular examples the transition between integral and composite modeling
in the cross-over frequency zone is not pronounced in the synthetic spectra, or in
the time domain.

The separation of the computation into two parts allows different techniques
to be used in computing Green’s function in both frequency ranges. For exam-
ple, finite differences or finite elements can be used for low-frequency (integral)
calculations and stochastic Green’s functions for the high-frequency (composite)
part of the wavefield. We assume that, since both the integral and composite ap-
proaches are based on the same, properly scaled set of subsources, the cross-over
filtering of low and high frequency spectral amplitudes in the transition zone (see
Fig. 2) will not introduce any artificial behavior of the synthetic waveforms.

Let us discuss our assumption of the rupture velocity and rise time in the
integral part of the hybrid model. For simplicity, both of them are considered
constant in our study. However, they can be, in general, prescribed variable,
e.g., in agreement with slip inversion results, and/or to be consistent with source
dynamics as suggested by Guatteri et al. (2004). This would better constrain the
integral part of the simulated wavefield. On the other hand, we do not expect
that the variable rupture velocity would change the composite part of the syn-
thetics substantially because of the incoherent summation, which is, by definition,
insensitive to rupture time variations. The shape of the slip velocity function in
the integral part of the model can, in principle, be chosen in any suitable form.
In our examples, the choice of Brune’s function seems to be sufficient. When
required, it can be chosen, e.g., in a more ”dynamically compatible” form, such
as Kostrov’s (1964) function. Note that if the reciprocal of the slip function
duration falls within the cross-over frequency range, the details of its shape will
play a rather minor role in the synthetics.

We have applied the hybrid k-squared model to medium-size earthquakes
(M,=5.9 and M,=6.1), for which the fault length-to-width ratio is not very large
(which holds for the subsources as well, since they are constructed as fractions
of the entire fault). For larger events, the fault length-to-width ratio may be
very large (say L/W > 4, Wells and Coppersmith, 1994). Consequently, the
subsources constituting the final slip are elongated. Indeed, elongated slip patches
are sometimes observed in kinematic slip inversions of past earthquakes, e.g., 1979
Imperial Valley (Hartzell and Heaton, 1986), 1999 Hector Mine (Ji et al., 2002),
2002 Denali (Asano et al., 2005). On the other hand, inverted slip distributions of
some other earthquakes are characterized by rather symmetrical (quasi circular)
slip patches, e.g., 1989 Loma Prieta (Emolo and Zollo, 2005), 1992 Landers ( Wald
and Heaton, 1994). In such cases, square or circular subsources should be used
instead of rectangular ones, suggested in this work. Their maximum size would
have to be constrained by the width of the fault. However, such a modification
of the hybrid model has not been tested yet and is left to future studies.

Finally, let us summarize the advantages of the hybrid model:
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e Contrary to the integral k-squared approach, chaotic small-scale behavior
is involved. It results in a more realistic directivity effect.

e Contrary to the composite approach, the model is better constrained for
low-frequency calculation, e.g., for slip inversions (no artificial low-frequency
filtering is necessary).

e The combination of the integral and composite approaches is numerically
efficient with respect to the purely integral one.
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Figure captions
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Figure 1: An illustrative picture of the hybrid source model. It corresponds to a
snapshot of the slip velocity (the more dark the color, the larger the slip velocity).
The star indicates a nucleation point. Note that the small-scale chaotic rupturing
takes place within the deterministic large-scale slip pulse.
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Figure 2: A sketch of the hybrid combination of the integral and composite
synthetics (bold solid lines) in the frequency domain. In the cross-over frequency
zone (between bounding frequencies f; and f2) the synthetics are multiplied by
weighting functions sin®(z) and cos?(z), with z = Z J{; __];11 (thin dashed lines) and
summed up (bold dashed line). This operation is performed for both the real and
imaginary parts of the spectrum. Note that the possible step in spectral levels in
the cross-over zone depends mainly on the mutual amount of directivity in the
integral and composite models. Moreover, the transition could be smoother due
to propagation effects and/or may be masked by the oscillatory character of the

Fourier spectra.
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Figure 3: Slip distribution constructed from the subsource database. Top panels
show examples of 4 selected levels. The resulting slip distribution (sum of all
seven levels 2 — 8) is shown at the bottom left. Three cross-sections of its spatial
amplitude Fourier spectrum are shown at the bottom right. The bold solid line

indicates the k-squared decay. Note that level n = 1 is neglected.

It would

correspond to a slip patch over the whole fault, which is, however, not observed
in slip inversions of medium-to-large sized earthquakes.
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Figure 4: Map of Greece with the 1999 Athens earthquake epicenter (star) and
its focal mechanism (7Tselentis and Zahradnik, 2000). The area of interest is
depicted as a gray rectangle.
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Figure 5: Scheme of asperities and nucleation point (star) location for the Athens
earthquake model. An example of one realization of the corresponding slip dis-
tribution can be seen in Fig. 3.
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Figure 6: PGAs (symbols) obtained at receivers shown at the top of Fig. 7
for three different values of ¢y, drawn as a function of epicentral distance. To
distinguish the three choices of ¢ better, all the symbols are slightly shifted to the
right or left of the correct horizontal position. Empirical attenuation curve (bold
dashed line) for M,, = 5.9 (Skarlatoudis et al., 2003) and its £20 uncertainty

(thin dashed lines) are shown.
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Figure 7: Comparison of synthetic horizontal PGAs (in m/s?) provided by the
purely integral k-squared method with k-dependent rise time (left), the purely
composite method (middle) and their hybrid combination (right). Top: log-
normal mean PGAs obtained from 10 random slip realizations, i.e. location of
subsources (preserving the locations of asperities). The epicenter (star), virtual
receivers (triangles) and surface projection of the fault (dark rectangle) are shown.
The area corresponds to the one shown as the gray rectangle in Fig. 4. Circles
denote stations used in Fig 8. The black triangle marks the location of station
DMK (see Fig. 9). Bottom: PGAs (points) obtained at receivers shown at the
top of this figure, drawn as a function of epicentral distance. Results for all the
10 realizations are included. The bold dashed line is the empirical attenuation
curve for M,, = 5.9 (Skarlatoudis et al., 2003). The thin dashed lines represent
its £20 uncertainty (o being the standard deviation).
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Figure 8: Examples of synthetic seismograms (displacement, velocity and accel-
eration) for 2 stations situated 24 km from the epicenter in the forward (A) and
backward (B) directions with respect to rupture propagation (see Fig. 7 for their
positions), obtained by the use of purely integral and purely composite models,
and by their hybrid combination (see legend). Note that the amplitude scales
are different for backward- and forward-direction stations. The bottom right two
plots in A and B are the corresponding acceleration Fourier amplitude and phase
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Figure 9: Comparison of the transverse component of the observed and synthetic
accelerations calculated by the hybrid approach at station DMK (see Fig. 7).
A: Full trace of the recording, the gray double headed arrow indicates 2 sec
part (8.4-10.4 sec) considered as the direct S-wave. B: Expanded 2 sec part of
the observed record (black curve) and the synthetics for 5 realizations of the
subsource distribution (gray curves). C: Comparison of Fourier spectra of the
waveforms shown in B. The cross-over range is indicated by f; and fs.
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Figure 10: Configuration of source and stations for the Kagoshima earthquake in
the area of interest (indicated by the gray rectangle in the inset map of Japan).
The epicenter location is shown as the star and the focal mechanism of the earth-
quake is indicated (Horikawa, 2001). The black line depicts the fault surface
projection. Stations are represented by the triangles. The selected subset of re-
ceivers subjected to comparison between observed data and synthetics is marked
in gray.
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Figure 11: Comparison of simulated PGAs (left) and PGVs (right) with the
observed plotted with respect to the fault distance. For each station the PGAs
and PGVs, obtained for 5 realizations of the random subsources position on the
fault, are shown. The bold line corresponds to the empirical attenuation curve
for Japan (M, = 6.1) by Si and Midorikawa (1999). The thin lines represent its
420 uncertainty.
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Figure 12: Observed horizontal components of velocities plotted with 5 corre-
sponding synthetics obtained by the use of different realizations of the subsource
distribution (keeping asperity unchanged). Fach panel corresponds to a given
selected station (depicted as gray triangles in Fig. 10). The top and bottom
traces (left in each panel) are the observed and simulated velocigrams, respec-
tively. The waveforms are normalized afifl their peak values are displayed close to
the seismogram trace. The comparison of observed (black) and synthetic (gray)
velocity amplitude spectra (not normalized) are shown on the right of each panel.

Frequencies f; and fy denote the cross-over zone.
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Tables

Parameter Athens earthquake Kagoshima earthquake
(Tselentis and Zahradnik, 2000) (Horikawa, 2001)

Lat. (N) 38.08° 31.08

Long. (E) 23.58° 130.37

Hypocentral depth [km] 12.0 7.6

Fault-top depth [km)] 8.8 1.1

Moment [Nm] 7.8 107 1.5-10'®

Strike 123° 280°

Dip 55° 90°

Rake —84° 0°

v, [km/s] 2.8 2.5

L [km] 11 15

W [km)] 8 10

Tmaz |S€C] 1.0 1.0

Lo [km] 2.8 2.5

Table 1: Model parameters of earthquakes under study.

’ thickness (km) ‘ vp(km/s) ‘ vs(km/s) ‘ plg/cm?) ‘

1 2.67 1.50 2.50
1 4.45 2.50 2.50
3 5.70 3.20 2.84
13 6.00 3.37 2.90
21 6.40 3.60 2.98
00 7.90 4.44 3.28

Table 2: Parameters of crustal model used in the Athens earthquake modeling
(so-called MA, see Tselentis and Zahradnik, 2000, ).
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| thickness (km) | v,(km/s) | vs(km/s) | p(g/cm®) | Qp | Qs |

0.5 2.8 1.62 2.1 80 | 40
4.5 4.9 2.83 2.3 300 | 150
10.0 6.0 3.46 2.7 300 | 150
20.0 6.7 3.87 3.1 500 | 250
00 7.8 4.50 3.4 1000 | 500

Table 3: Velocity structure used in the Kagoshima earthquake modeling (from
Horikawa, 2001).
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