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Abstract

This study deals with the methodical aspects of k−2 (Bernard et al., 1996) kinematic strong motions modelling:
(1) it is shown how to incorporate the k-dependent rise time for 2D fault geometry in the strong motion synthesis
according to the representation theorem, (2) it is suggested how to produce realistic k−2 slip models including
asperity(ies), (3) modifications are introduced concerning the type of used slip velocity function and the corner
wave number in the slip distribution. High frequency effects of these generalized models are discussed. It is shown
that, assuming the rise time proportional to the spatial slip wavelength at high wave numbers, the spectral decay
of displacement at frequencies higher than the corner frequency is given just by the decay of the slip distribution
spectrum, regardless of the type of slip velocity function. It is shown numerically that this model provides ω-
squared source spectrum even in a vicinity of a 2D normal fault buried in 1D structure, which is an agreement with
previous studies.

Introduction

Modelling realistic time histories of displacement, ve-
locity and acceleration in the vicinity of a fault is of
great importance for seismic engineers in determin-
ing the structural response and in damage estimation.
Especially, high-frequency accelerations are respons-
ible for damage of common buildings with resonance
frequencies higher than 1 Hz. In this respect, strong
motion synthesis for moderate to large earthquakes
needs a realistic source model in order to predict re-
liable time histories. In this paper, we are concerned
with the kinematic modelling of the seismic source,
not with rupture dynamics. We want to propose a real-
istic kinematic process on a finite-extent fault which
would provide the desired ω-squared source spectrum
(Aki, 1967). We start from the k−2 rupture model,
introduced by Bernard and Herrero (1994). The au-
thors propose a kinematic self-similar random slip
distribution with k−2 decay of amplitudes at high
wave numbers k. They showed that rupture propagat-
ing unilaterally at constant velocity with such final

slip distribution, together with the instantaneous slip
(i.e. the slip velocity function is δ-pulse), radiates an
ω-squared source spectrum. If a more realistic slip
velocity function is used, e.g., a box car, it acts as a
low-pass filter, thus producing an undesired ω-cubed
source spectrum. To preserve the ω-squared source
spectrum, Bernard et al. (1996) proposed the boxcar
with a k-dependent width (rise time).

The k−2 rupture model has already been success-
fully used for past as well as future earthquakes (e.g,
Berqe-Thierry et al., 2001; Zollo et al., 1997; Em-
olo and Zollo, 2001). All these papers emphasize the
importance of considering complex source processes
for estimating strong ground motion in the near-source
region.

The aim of this paper is to discuss the methodo-
logical aspects of k−2 kinematic modelling of strong
ground motions. We show how to incorporate the k-
dependent rise time into the strong motion synthesis
according to representation theorem for a 2D fault
geometry in general media. We discuss some import-
ant attributes of the model (e.g., slip velocity function,
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corner wave number in the slip distribution) and their
consequences on the radiated spectra, especially, as
regards directivity. We provide some suggestions how
to produce realistic k−2 slip distributions including
asperity(-ies). We numerically show that the model
provides ω-squared source spectrum in a vicinity of
a 2D normal fault buried in 1D structure.

Rectangular fault

We derive a general equation for strong motion syn-
thesis for a kinematic 2D rectangular fault model with
a wave number dependent rise time. In the frequency
domain, acceleration ü measured at point r, caused
by a pure shear rupture, is given by the representation
theorem (see, e.g., Aki and Richards, 1980)

ü(r, f ) =
�
�

dξḢ (r, f ; ξ )�u̇(ξ , f ). (1)

where H is the impulse response of the medium (ob-
tained by, e.g, discrete wavenumber, finite difference,
ray methods, etc.) and dots above the letter indicates
the time derivative, ξ denotes the position on fault �

and �u̇ is the time history of the slip velocity. Let
us assume that any point on the fault follows slip rate
history �u̇0(ξ , t) (starting at t = 0) shifted in time as
the rupture front expands. Denoting the rupture time
tr , in frequency domain we have

�u̇(ξ , f ) = �u̇0(ξ , f )e−2πif tr (ξ). (2)

We express �u̇0 in (2) using its inverse spatial Fourier
transform. Inserting it in (1) we yield

ü(r, f ) =
�
�

dξḢ (r, f ; ξ )e−2πif tr (ξ)

�
dk�u̇0(k, f )e2πik·ξ . (3)

We assume that in the wave number domain, �u̇(k, f )

can be factorized into product D(k)U(k, f ), where
D(k) represents the final slip for the given k and
U(k, f ) is the spectrum of the slip velocity function
corresponding to unit final slip. Its duration in the time
domain represents the rise time.

To take into account the wave number depend-
ent rise time, we define function F(t) corresponding
to the unit final dislocation with one second dura-
tion. The time scaling of U can then be expressed
as U (k,t)=F (t/τ (k))/τ (k). The unit final dislocation is

preserved by factor 1/τ(k). In the frequency domain,
U(k, f ) = X(f τ(k)), where X(f ) is the Fourier
spectrum of F(t). Inserting it into Eq. (3) we obtain
the representation theorem for a kinematic model with
k-dependent rise time:

ü(r, f ) =
�
�

dξḢ (r, f ; ξ )e−2πif tr (ξ)

�
dkDX(f τ(k))e2πik·ξ . (4)

The k-dependent rise time, slip and rupture time dis-
tributions for a 2D fault should be specified in such a
way to preserve the main features proposed by Bern-
ard and Herrero (1994) and Bernard et al. (1996) for
a 1D (line) fault, namely to preserve the radiation
of ω-squared source spectra. In this way, the k−2

rupture model for a line fault (introduced in tbe above-
mentioned studies) is extended to include the 2D fault
geometry.

One of the basic assumptions of Bernard and Her-
rero (1994) is that the rupture propagates unilaterally
at constant velocity v. For a 2D fault, we can assume
the rupture to propagate radially at a constant velocity.
The radial rupture propagation has been already taken
into account by, e.g., Berge et al. (1998) and Hisada
(2001).

Concerning the rise time variations, Bernard et al.
(1996) suggested that the rupture propagates in the
form of a slip pulse of dimension L0 (related to the
maximum rise time by τmax = L0/v). Slip inhomo-
geneities of shorter characteristic dimensions rupture
in time proportional to their spatial wavelength. The
observational evidence for such pulses propagating
over the fault are given by Heaton (1990).

More specifically, Bernard et al. (1996) introduced
two parameters to quantify the relation between the
rise time and the wave number. 1) τmax which controls
the maximum duration of slip, and 2) a nondimen-
sional coefficient a which controls, for a given slip
wavelength λ, the ratio between the rise time and the
time the rupture needs to cover distance λ. The authors
suggested a = 0.5, which is also used in this paper.
For the 2D fault geometry, we propose the rise time to
be dependent on k = |k| in the following way:

τ (k) = τmax√
1 +

(
L0k
a

)2
. (5)
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Figure 1. Three k−2 slip distributions for different values of K – the parameter controlling the corner wave number in (6). The mean slip is the
same for all these cases.

Slip distribution

According to Herrero and Bernard (1994) the k−2

asymptotic decay of the slip amplitude spectrum takes
place beyond the corner wave number kc = 1/L,
where L is the characteristic dimension of the fault,
while below the corner wave number the slip is in-
dependent of k. We investigate source models with
a generalized corner wave number for the 2D fault
of length L and width W, preserving the k−2 spectral
decay.

We use the spatial 2D Fourier spectrum of the slip
distribution in the following form

D(kx, kz) = �ūLW√
1 +

((
kxL
K

)2 +
(

kzW
K

)2
)2

ei�(kx,kz),

(6)
where �ū denotes the mean slip and � is the phase
spectrum. The terms L/K and W/K represent the
correlation lengths of distribution (6) and their recip-
rocals are the corner wave numbers. Similar formula
has been suggested by Sommerville et al. (1999) and
Hisada (2001). In Eq. (6) K is a dimensionless constant
which controls the corner wave numbers and, con-
sequently, the slip distribution (K plays similar role
as a does in Eq. (5)).

Note that there are no restrictions on the phase
spectrum of (6). According to Bernard and Herrero
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Figure 2. Empirical dependence of K on moment magnitude Mw

after Somerville et al. (1999). Kx and Kz denote K in the strike
and dip direction, respectively. Note that the paper prefer K < 1
(corresponding to a relatively smooth slip).

(1994), � is considered random at any wave number,
except the circle k2 = k2

x + k2
z ≤ (1/L)2 + (1/W)2

for which the phase is chosen so that the final slip is
concentrated in the centre of the rectangular fault. This
also means that we have no other physical constraints
on the dislocation than the dimension of the fault and
the mean slip. That is why we refer to this as the
random slip. Examples of the random slip for various
values of K are shows in Figure 1.

Let us discuss the corner wave numbers in slip dis-
tribution (6) in more detail. They have been already
studied in papers dealing with source scaling relations
(Somerville et al., 1999; Mai and Beroza, 2000; Mai
and Beroza, 2001) where information about the cor-
relation lengths (i.e. L/K or W/K in our notation)
is extracted from smoothed slip inversion results, i.e.
from data of relatively low resolution. (For tests of the
slip inversion accuracy, see Graves and Wald, 2001,
and Wald and Graves, 2001). Up to now no more
than about tens of slip models have been examined
for magnitudes in the range about 5 < MW < 8 (see
http//:www-socal.wr.usgs.gov/wald/slip_mo-
dels.html for available slip models of the west-
ern North America earthquakes). An empirical curve
according to Somerville et al. (1999) showing the
magnitude scaling of K (determined from the empir-
ical relations for the corner wave numbers and rupture
dimensions derived in the paper) are in Figure 2. It can
be seen that the empirical relations suggest K < 1.
However, it should be taken into account that the val-
ues in Figure 2 are rather underestimated due to the
smooth character of the slip derived from the inver-
sions. On the other hand, there is evidence supporting

the small value of K : the K = 2 case in Fig-
ure 1 shows quite large areas of zero slip which is
not supported by the slip inversions (Bernard, per-
sonal communication). These considerations led us to
choose K = 1. (Note that, e.g., 20% variations of K

around 1 cannot be excluded).
Note that considering a random slip with K = 1

means one slip patch in the center of the fault (see
Figure 1). Such concentration of the seismic moment
(slip) at the centre of the fault is probably not very
realistic for whole range of magnitudes. It may be
valid for small earthquakes, perhaps asperities, but not
for moderate to large ruptures in general for which
the slip inversions indicate occurrence of two or more
asperities on the fault at various positions.

>From the above discussion it follows that we
need to generate slip models consisting of asperities,
but with K around 1 retaining the k−2 spectral de-
cay at high wave numbers. Such slip models can be
obtained by introducing the so-called hybrid slip gen-
erator (originally proposed by Hisada, 2001, for the
slip inversion results). We consider the deterministic
part of the final slip on long scales. It can be ob-
tained, for example, from slip inversions, from some
empirical relations, or from some tectonic properties
of the region. Alternatively, in the strong motion pre-
diction studies the asperity position can be subjected
to variations. The stochastic part of the slip is then
superimposed on the remaining scales.

An example of the hybrid slip distribution con-
taining one asperity can be found in Figure 3. The
procedure to generate the hybrid slip can consist of
four steps:
• Layout of the blocks of constant slip with the

dimension of �L × �W representing the determ-
inistic part of the slip (left side of Figure 3).

• Smoothing.
• Transforming to the wave number domain.
• Prescribing the k−2 spectral decay by applying

function (6) with random phase for k > kN , where
kN is Nyquist’s wave number of the deterministic
part (k2

N = (1/�L)2 + (1/�W)2). In this way, we
in fact add some ‘noise’ to the deterministic part
of the slip distribution.

The smoothing of the dislocation (second step) is ne-
cessary to avoid spectral holes caused by the sharp
edges of the layout blocks1. We use simple smoothing

1 The amplitude spectrum of a box corresponds to function
sinc(f ). This oscillatory function reaches zero for some values of
f . Such spectral holes are an artefact of the unphysical assumption
that the deterministic part of the slip consists of blocks.
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Figure 3. An example of the hybrid slip model with one asperity. Left: the deterministic part of the slip distribution. Right: the resulting hybrid
slip.

Figure 4. The geometry used for the line fault approximation with unilateral rupture propagation. The coordinate system is connected with the
fault. The rupture propagates in the x direction.

with a sliding window.

The hybrid slip generator (Fortran code) is fr eely
available from the authors.

The influence of k−2 model parameters

To understand the influence of the source model para-
meters on the radiated wave field, it is suitable to

express source time functions analytically. The corres-
ponding formulae can be obtained under the follow-
ing, commonly used, simplifying assumptions: a line
fault in Fraunhoffer’s approximation with unilateral
rupture propagation in homogeneous space (see Fig-
ure 4). The amplitude factor representing the radiation
pattern is assumed to be constant with respect to the
position on the fault. It can be shown (see Appendix in
this paper, or Gallovič, 2002) that the representation
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theorem then simplifies to the form

ü(f ) = (2πif )2CD(k′
x, k′

z)X(f τ(k′
x, k

′
z)),

k′
z = f

vCd
, k′

z = 0 (7)

with

C = µFc

4πρc3d0
e−i2πfd0/c,

where µ is the rigidity, ρ the density, Fc is a value
given by the radiation pattern, and d0 is the epicentral
distance. Cd is the directivity coefficient dependent on
the angle from fault strike 
 (see Figure 4) and on ratio
v/c between rupture velocity v and wave propagation
velocity c:

Cd = 1

1 − (v/c) cos 

. (8)

After inserting (5) and (6) into (7) we obtain the
following expression for the amplitude spectrum:

|ü(f )| = (2πf )2 µFc

4πρc3d0

�ūLW√
1 +

(
fL

vCdK

)4

∣∣∣∣∣∣∣∣
X


f

τmax√
1 +

(
f L0
vCda

)2




∣∣∣∣∣∣∣∣
. (9)

Let us briefly discuss the shape of such amplitude
spectrum following the discussion for the case of box-
car slip velocity function (X(f ) = sinc(f )) by Bernard
et al. (1996). To recognize the directivity effects bet-
ter, we consider isotropic radiation pattern (Fc not
depending on 
).

First, let us examine the special case of the in-
stantaneous slip (X(f ) = 1). Eq. (9) then simplifies
to

|ü(f )| = (2πf )2 µFc

4πρc3d0

�ūLW√
1 +

(
f L

vCdK

)4
. (10)

Comparing (10) and (6) we can see that the dis-
placement spectrum u(f ) at a given frequency would
correspond to the wave number spectrum of slip dis-
tribution D at wave number k′

x = f
vCd

(while k′
z =

0). Consequently, the spectral decay of the apparent
source time function corresponds to the spectral decay
of the dislocation distribution for kz = 0.

Figure 5. The apparent acceleration source spectra radiated by the
k−2 rupture model with instantaneous slip for various values of 
.
Note the angular dependence of the apparent corner frequency and
the spectral plateau.

The above-mentioned assumptions for slip dis-
tribution D yield a rupture model providing an ω-
squared source spectrum. Examples of the apparent
acceleration source spectra for various angles 
 can
be seen in Figure 5. Notice that the apparent corner
frequency,

fa = vCdK

L
, (11)

is controlled by the corner wave number in dislocation
distribution (6). It is not affected by the fault length
itself but by the correlation length L/K and Cd , i.e.
fa varies with the angle relative to the fault (directivity
effect).

Figure 5 also shows another effect of directivity:
the angular variation of the height of the accelera-
tion plateau. It can be examined, for any slip velocity
function, using Eq. (9):

|ü(f → ∞)| = πFcM0

ρc3d0
f 2

a X(aCd), (12)

where M0 = µ�ūLW is the scalar seismic moment.
Especially for the instantaneous slip, the height

of the acceleration plateau is proportional to C2
d (due

to proportionality to f 2
a ), which has been firstly con-

cluded by Joyner (1991). It represents a very strong
directivity effect. For v/c = 0.9, C2

d would reach 100
in the direction of rupture propagation. Such high fre-
quency amplification has not been observed (Bernard
et al., 1996). Note that such strong directivity effect
is due to the instantaneous slip assumption. If a more
realistic slip velocity function (of non-zero duration)
is considered, the directivity effect becomes less pro-
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nounced: the angular dependence of the acceleration
plateau decreases by a factor of X(aCd). This res-
ults in more realistic accelerograms in the direction of
rupture propagation.

It follows from Eq. (9) that the source spectrum has
another corner frequency. This is called the transition
frequency

f0 = vCda

L0
. (13)

The transition frequency was firstly expressed by
Bernard et al. (1996). The transition frequency is
connected with the corner wave number of rise time
distribution (5). It is influenced by the width of the
propagating slip pulse L0 and by Cd . The effect of f0
on the source spectra is discussed later.

Since in this study we concentrate on the meth-
odical aspects of the kinematic source modeling, we
consider useful to examine several standardly used slip
velocity functions. The first one is a boxcar (used by
Bernard et al., 1996) function, which is hardly ac-
ceptable from the point of view of source dynamics.
The second one is more realistic Kostrov-like function
proposed by Hisada (2000). The third one is Brune’s
function, which can be easily expressed as

F(t) =
{

f 2
b te−fbt , t ≥ 0

0, t < 0
, (14)

where parameter fb controls the effective width of
Brune’s function. One of the most important advant-
ages is its smoothness (in principle it could qualitat-
ively understood as a smoothed version of the Hisada’s
pulse).

All discussed functions and then amplitude spec-
tra are shown in Figure 6. The amplitude spectrum
of Boxcar function exhibit undesirable spectral holes,
while the amplitude spectra of Hisada’s and Brune’s
functions are smooth. The spectral decays of boxcar’s
and Hisada’s function are very similar to each other in
the frequency region of our interest, while the Brune’s
function amplitude spectrum falls off faster.

The acceleration amplitude spectra for the boxcar,
Brune’s and Hisada’s slip velocity functions for two
widths of the propagating pulse are displayed in Fig-
ure 7. As we can see, the acceleration levels for His-
ada’s and Brune’s slip rate functions are higher than
that for the boxcar function. However, they are lower
compared with the instantaneous slip case (Figure 5).
To better illustrate this, we show the amplification
at high frequencies in Figure 8. By the amplification
term we understand quantity C2

dX(aCd) see Eq. (12).

As regards the direction of rupture propagation, the
assumption of the instantaneous slip would generate
strong acceleration pulses. On the other hand, the use
of the boxcar slip rate function results in underestim-
ated pulses when compared with pulses provided by
the more realistic Brune’s and Hisada’s slip velocity
functions.

Let us discuss the acceleration spectra in the fre-
quency range between the apparent corner and trans-
ition frequencies (see Figure 9 for illustration). Similar
discussion can be found in paper by Bernard et al.
(1996) but for special case of boxcar slip velocity
function only. Note that fa < f0 since K/L < aL0
(see (11) and (13)). At low frequencies (f < fa),
ü(f ) ∝ f 2X(f τmax). Since at low frequencies X(f )

is nearly constant (see Figure 6), ü(f ) behaves sim-
ilarly to the impulsive slip rate function. This means
that ü(f ) is not affected by the finite duration of the
slip rate function, i.e the spectral amplification pro-
portional to C2

d (see the model with instantaneous rise
time) is preserved. Between fa and f0 (middle fre-
quencies), the slip velocity function of finite duration
starts to act as a low-pass filter because X(f ) starts
to decay (Figure 6). However, behind the transition
frequency (high frequencies), the terms in brackets
under both square roots are >> 1 (so that 1 can be
neglected). Consequently, ü(f ) does not depend on
f . To summarize, the k−1 proportionality of the rise
tinne causes the source acceleration spectrum to be
independent of frequency, i.e. we obtain a plateau at
high frequencies. Thus, although this model can be
understood as consistent with the observed ω-squared
model, it prescribes the more complicated behaviour
at middle frequencies.

Note that, regardless of the station position, the
K-parameter (originating from the corner wave num-
ber of the dislocation distribution) affects the source
spectrum: the corner frequency and the height of the
acceleration spectral plateau are proportional to K and
K2, respectively. Note that it does not affect the source
spectrum at low frequencies (seismic moment).

An example: 1999 Athens earthquake

Up to now we have studied the influence of the model
parameters in the farfield of linear fault in homo-
geneous medium. However, the model is capable to
consider a 2D rectangular fault in a general medium
(see Eq. (4)). A parametric study on PGA maps
for such general case is presented by Gallovič and



218

Figure 6. Three slip velocity functions (left) used in this study with their amplitude spectra (right). Hisada’s function is constructed according to
Hisada (2000) for a special choice of parameters describing the function: NV = 5 and fmax = 16s−1. Brune’s function is computed according
to (14) with fb = 8s−1. All three functions have 1 sec duration and correspond to unit finite dislocation (fb was chosen in such a way that the
Brune’s function reaches at 1 sec about 1/1000 of its maximum).

Brokešová (submitted). We show here just an example
of the strong motion synthesis in 1D layered me-
dium for a normal fault, based on model of the 1999
Athens earthquake (Mw = 5.9), to demonstrate that
the model provides ω-squared source spectrum even
in the near source distances where the assumptions
made in previous sections (linear fault, Fraunhoffer’s
approximation, homogeneous space) are violated.

Table 1. Fixed parameters for the Athens earth-
quake model

Lat. (N) 38.08◦
Long. (E) 23.58◦
Hypocentral depth [km] 12.0

Moment [Nm] 7.8·1017

Strike 123◦
Dip 55◦
Rake –84◦
Rupture velocity [km/s] 2.8

As regards the source model, we adopt the mag-
nitude, location, depth, focal mechanism and the
fault orientation from previous studies (for review
see Zahradník, 2002). The parameters are listed in
Table 1. The remaining parameters needed for the k−2

model (L,W,L0 etc.) are obtained from the empirical
relations of Somerville et al. (1999) (see Table 2).

Somerville et al. (1999) suggested 1 or 2 asper-
ities for the magnitude we are concerned with. For
simplicity, we use the hybrid slip consisting of only
1 asperity with the mean slip twice larger than the
mean slip over the whole fault. A sample realization

Table 2. Fixed parameters for the Athens earth-
quake model obtained from the empirical relations
of Somerville et al. (1999). The maximum rise time
τmax is determined to be twice longer than the av-
erage rise time yielded by the corresponding scaling
relation

L [km] 11

W [km] 8

mean slip [m] 0.27

τmax [sec] 0.84

L0 [km] 2.35

Area of fault covered by asperity 0.25

Average asperity slip contrast 2.0

Figure 8. Azimuthal dependence of directivity amplification
C2

d
X(aCd) (height of the accelerogram spectral plateau, see Eq.

(12)) at high frequencies for the slip velocity functions studied in
this text. Note the relatively strong/weak amplification for the in-
stantaneous/boxcar case with respect to Brune’s and Hisada’s case.
The oscillatory character of the amplification in the boxcar case is a
consequence of its unrealistic shape.
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Figure 7. Acceleration amplitude spectra in the case of the wave number dependent rise time with two different slip pulse widths (columns)
and three different slip velocity functions (rows). The boxcar case is modified from Bernard et al. (1996). The ranges of axes are the same as in
Figure 5.
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Figure 9. Acceleration amplitude spectrum taken from the top left
panel of Figure 7 for 
 = 60◦. The apparent (fa) and transition
(f0) corner frequencies of the model are displayed. The ranges of
axes are the same as in Figure 5 and 7.

of the hybrid slip distribution used is displayed in
Figure 3. To pronounce the directivity effect, we as-
sume according to Plicka and Zahradník (2002) that
the nucleation point (corresponding to the hypocentre)
is located in the bottom left corner of the asperity.
The rupture propagates radially at a constant rupture
velocity. Hisada’s slip velocity function is assumed.

The 1D crustal model, originally used for discrete
wave number modelling of regional Athens earth-
quake data by Tselentis and Zahradník (2000) (model
MA), was chosen for our computations. This model
is partially supported in the paper by Novotný et al.
(2001).

Since we are interested in the source time functions
and their spectra, we compute direct S-wave only by
means of the ray method (we could also consider P-
wave only but the S-wave is more eligible in strong
motion studies) and we neglect the attenuation and
site effects. The computer code for 2D ray compu-
tations BEAM87, written by Červený and modified
by Brokešová (1993) (see also Opršal et al., 2002),
to allow for 2.5D computations is used. By the 2.5D
computation we understand the computation of 3D
rays in a 2D medium (i.e. a medium with properties
depending on the vertical and one horizontal coordin-
ate, in general)2. In our case, however, the model is
1D only, so that at this stage we do not utilize the
full advantage of the 2.5D approach mentioned above

2 Note that in the seismological literature the term ‘2.5D model-
ling’ is often understood in a much less general sense (calculation of
2D in-plane rays while considering point source radiation, see, e.g.,
Bleistein, 1984; Lafond and Levander, 1990).

Figure 10. The geometry for the synthetic example. The rectangles
in the middle of the map represent the projection of the fault and the
asperity onto the earth’s surface (see also Figure 3). The star denotes
the epicentre and the triangles the stations.

(our rays are only plane curves). The extension to 2D
models in future would be straightforward.

The receivers are distributed radially around the
epicenter in four perpendicular directions. In each dir-
ection, there are 4 receivers at epicentral distances of
5 to 20 km at steps of 5 km. The geometry is shown in
Figure 10.

The rays for each receiver are traced from grid
points distributed sparsely on the fault (20 × 15), and
then the parameters of the ray solution (travel times
and complex amplitudes) are interpolated by bicubic
splines into a grid dense enough to evaluate the repres-
entation integral (128 × 64). The interpolation enables
significantly faster computation of the synthetics (e.g.,
Brokešová, 1996; Berge-Thierry, 2001). Note that
in the ray approach it is not necessary to interpolate
Green’s functions as a whole, but it is sufficient to
interpolate only the ray solution parameters which, in
this particular model, exhibit relatively smooth beha-
viour with respect to the spatial coordinates on the
fault.

The synthesis is performed according to Eq. (4) up
to 5Hz, which is above the apparent corner frequency.
The accelerograms and their spectra (obtained for a
single slip realization) are shown in Figure 11. The
figure contains four panels corresponding to four epi-
central distances under study. Within each panel we
can compare the synthetics for four azimuths to study
the directivity effects.
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Figure 11. Synthetic accelerograms (in m/s2) and their amplitude spectra: the four panels correspond to four epicentral distances and four
azimuths from the north clockwise. Note the directivity effects: the amplitude and duration of the accelerogram, the height of the accelerogram
spectral plateau and the corner frequency vary significantly with the azimuth. The time scale is in seconds, the frequency scale in Hz.

In particular, stations of azimuth 112.5◦ lies in the
direction of rupture propagation and, thus, the dura-
tion of the records is shorter and amplitudes are larger
with respect to records at stations in the opposite direc-
tion (of azimuth 292.5◦). Synthetics at stations located
to the south and north from the south-dipping fault
exhibit different maximal amplitudes even if they lie
in the same epicentral distances. The nearest station
(5 km) to the north is affected by up-dip directivity
combined with maximum in S-wave radiation pattern
and, thus, its synthetic is the strongest. For more
distant north stations both effects vanishes while the
southern stations still lie in the direction of S-wave
radiation pattern lobe, which causes that their amp-
litudes becomes larger than the amplitudes of northern
stations at the same epicentral distances.

Generally, in spite of the near fault location of
the receivers, the acceleration spectra exhibit the de-
sired spectral plateau beyond the corner frequency.
According to our tests, these features of the source
functions are independent of the slip distribution real-
ization. This validates the 2D extension of the k−2

rupture model, which is in agreement with previous
studies dealing with this kinematic model (e.g, Berge-
Thierrg et al., 2001; Zollo et al., 1997; Emolo and
Zollo, 2001).

Discussion and conclusion

The paper concentrates on the methodical aspects of
strong ground motion synthesis based on the k−2 rup-
ture model of Bernard et al. (1996). The approach
developed here allows for general models, however in
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the presented example (1999 Athens earthquake) we
do not utilize the full advantage of the presented ap-
proach since we did not have a more complex model
at our disposal.

Let us summarize the most important methodical
aspects of our approach:

1. We propose a simple analytical expression (4) for
kinematic strong motion synthesis for a 2D fault
model buried in general medium, including the
wave number dependent rise time (Bernard et al.,
1996). For faster computations in the far-field ap-
proximation with a general slip velocity function,
the instantaneous rise time can be used, while the
spectral plateau is then corrected according to Eq.
(9) (Beige-Thierry et al., 2001).

2. In order to generalize the k−2 slip model, the
corner wave number K/L (L being the fault
length) in the k−2 stochastic slip distribution of
Bernard and Herrero (1994) has been discussed.
It has been shown that the K-parameter controls
the smoothness/roughness of the slip distribution.
We discussed current indirect observations (inver-
ted slip models) and conclude that the preferred
value of K is around 1. To model realistic slip
distributions with K = 1 consisting of asperities
we suggest an easy way to generate so-called hy-
brid slip (originally proposed by Hisada, 2001, for
the slip inversion results). Note that in this paper
single parameter K has been introduced for sim-
plicity although, in general, there should be two
parameters Kx and Kz controlling the corner wave
number in strike and dip directions, respectively.
This more strict approach (with both Kx and Kz)
will be studied in future.

3. To provide a flexible tool for simulating a vari-
ety of earthquakes, the restriction to a boxcar slip
velocity function (with wave number dependent
rise time) discussed in Bernard et al. (1996) was
relaxed. It was found that the desired ω-squared
source spectrum can be generated by any slip ve-
locity function whose rise time is proportional to
the spatial slip wavelength at high wave numbers.
Thus, the spectral decay at frequencies higher than
the corner frequency is given only by the decay
of the slip distribution spectrum, regardless of the
type of slip velocity function. This shows that
the ω-squared source model is robust enough and
could also explain why the ω-squared decay is
observed so commonly.

4. The theoretical study of the effect of various slip
velocity functions on the ground acceleration has

shown that the instantaneous slip and the boxcar
function represent the limiting cases. The instant-
aneous slip overestimates the accelerations while
the boxcar underestimates them with respect to
more general slip velocity functions (e.g., Brune’s
and Hisada’s in this study). >From this point of
view the case with instantaneous rise time can
represent ‘extreme’ scenario for strong ground mo-
tion prediction (Zollo et al., 1997 and Emolo and
Zollo, 2001). On the other hand, for modelling real
data we suggest using any slip velocity function of
non-zero duration (e.g., Brune’s, Hisada’s).

The k−2 rupture modelling with properties described
in this paper has been applied to a general model of
normal fault buried in a layered medium. This syn-
thetic experiment has shown that the generalization of
the k−2 model to 2D fault provides ω-squared source
spectrum even in short epicentral distances. This is in
agreement with previous studies dealing with this kin-
ematic model (e.g, Berge-Thierry et al., 2001; Zollo et
al., 1997; Emolo and Zollo, 2001).

Available Fortran code: The hybrid slip generator
is freely available from the authors.

Appendix

Here we briefly show how to derive Eq. (7) from Eq.
(4), i.e. how to get simple analytical formula for a line
fault (in Fraunhoffer’s approximation with unilateral
rupture propagation in homogeneous space) from rep-
resentation theorem for 2D rupture model in general
medium to (for geometry see Figure 4). For simplicity
we consider magnitude of displacement u=|u| only.

The assumption of linearity of the fault simplifies
formula (4) to

ü(r, f ) =
L�
0

dxḢ(r, f ; x)e−2πif tr (x)

�
dkxD(kx, k′

z)X(f τ(kx, k
′
z))e

2πikxx, k′
z = 0 (15)

Since slip distribution in the spatial domain D(x) is
identically zero outside the fault (i.e. for x < 0 and
x > L), the limits of the integral with respect to x

in the formula (15) can be extended to infinity. In the
following we omit writing the limits of the integral.

For homogeneous space, time derivative of the
impulse response Ḣ can be expressed as

Ḣ (r, f ; x) = (2πif )2 µFc

4πρc3d(r, x)
e−2πif d(r,x)/c,

(16)
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where d(r, x) is the distance from source to receiver.
The description of other quantities can be found in the
text of this paper.

The rupture is assumed to propagate unilaterally
along the x-axis at constant rupture velocity v, thus,
we can express the rupture time as tr (x) = x/v. Let
us express distance d(r, x) in the Fraunhoffer’s ap-
proximation (valid only for observers situated far from
the fault with respect to the length of the fault) as
d

.= d0−x cos 
, where d0 is the hypocentral distance
(see Figure 4). As far as the amplitude coefficient in
Eq. (16) is considered, we assume that the variations
of d and Fc with x are negligible compared to hypo-
central distance d0. Then, inserting (16) to (15) we
get

ü(r, f ) = (2πif )2C
�

dxe−2πif x/vCd

�
dkxD(kx, k

′
z)X(f τ(kx, k

′
z))e

2πikxx, k′
z = 0 (17)

where C and Cd (directivity coefficient) are defined by
(7) and (8), respectively.

Integrating (17) with respect to x we obtain

ü(r, f ) = (2πif )2C
�

dkxD(kx, k′
z)X(f τ(kx, k

′
z))

δ

(
kx − f

vCd

)
, k′

z = 0 (18)

>From this, integrating with respect to kx , we come
easily to Eq. (7).
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to Jiří Zahradník and anonymous referees for help-
ful review and comments. Many thanks also belong
to Kojiro Irikura for invaluable discussions. Some of
the figures were made with Generic Mapping Tools
(Wessel and Smith, 1991). The authors were suppor-
ted by the following grams: EU project EVG1-CT-
1999-00001 PRESAP and several research projects
in thc Czech Republic – MSM 113200004, GACR
205/03/1047 and GAUK 176/2000/B GEO/MFF.

References

Abrahamson, N.A. and Shedlock, K., 1997, Overview, Seis. Res.
Letters 68, 9–23.

Aki, K., 1967, Scaling law of seismic spectrum, J. Geophys. Res.
72, 1217–1231.

Aki, K. and Richards, P.G., 1980, Quantitative Seismology: Theory
and Methods, W.H. Freeman, San Francisco.

Berge-Thierry, C., Bernard, P. and Herrero, A., 2001, Simulating
strong ground motion with the ‘k−2’ kinematic source model:
An application to the seismic hazard in the Erzincan basin,
Turkey, J. Seismology 5, 85–101.

Bernard, P. and Herrero, A., 1994, Slip heterogeneity, body-
wave spectra, and directivity of earthquake ruptures, Annali di
Geofisica XXXVII, 1679–1690.

Bernard, P., Herrero, A. and Berge, C., 1996, Modeling directivity
of heterogeneous earthquake ruptures, Bull. Seism. Soc. Am. 86,
1149–1160.

Bleistein, N., 1984, Two-and-one-half Dimensional In-Plane Wave
Propagation, Research report, Center of Wave Phenomena,
Colorado School of Mines, Golden, Colorado.

Brokešová, J., 1993, High-Freguency Ground Motions due to Ex-
tended Seismic Sources in Complex Structures, PhD. Thesis,
Charles University, Prague.

Brokesová, J., 1996, Construction of ray synthetic seismograms us-
ing interpolation of travel times and ray amplitudes, PAGEOPH
148(3-4), 503–538.

Emolo, A. and Zollo, A., 2001, Accelerometric radiation simulation
for the September 26, 1997 Umbria-Marche (Central Italy) main
shocks, Annali di Geofisica 44, 605–617.
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