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SUMMARY

In this article we present a Discontinuous Galerkin scheme of arbitrary accuracy in space

and time (ADER-DG scheme) to solve linear hyperbolic systems on unstructured tri-

angular meshes in the presence of externally given source terms that may depend on

space and time. The consideration of source terms is new since in previous articles on

ADER-DG schemes only the homogeneous case was treated. We combine a Discontinu-

ous Galerkin Method for space discretization with the ideas of the ADER (arbitrary high

order derivatives) time integration approach. The time integration is performed via the so-

called Cauchy-Kovalewski procedure using repeatedly the governing partial differential

equation (PDE) itself. Thus we are able to construct a numerical method that is of arbi-

trary order of accuracy in space and time using only one single explicit step to integrate

the PDE from one time level to another.

Two different cases of source terms are considered: continuous sources in space and time

and point sources that are characterized by a Delta distribution in space and some con-

tinuous source time function. We emphasize that the presented method is able to deal

with point sources at any position in the computational domain that does not necessarily

need to coincide with a grid point. Interpolation is automatically performed by evalua-

tion of the test functions at the source locations. The convergence studies for continuous
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sources in space and time demonstrate that also in the presence of source terms the scheme

maintains very high order of accuracy uniformly in space and time. Applications of the

proposed method to two classical benchmark problems of computational seismology in-

volving point sources, namely Lamb’s problem and Garvin’s problem, and comparisons

with the analytical solutions confirm the accuracy of the method as well as the correct

treatment of free-surface boundary conditions.

Key words: elastic waves, discontinuous Galerkin method, arbitrary high order, unstruc-

tured meshes, source terms, Lamb’s problem, Garvin’s problem

1 INTRODUCTION

We present a new Discontinuous Galerkin (DG) finite element scheme for two space dimensions that

uses the Arbitrary high order DERivatives (ADER) approach in order to solve linear hyperbolic sys-

tems with very high accuracy in both space and time on unstructured grids in the presence of externally

given space-time dependent source terms. The ADER approach was first developed in a Finite Vol-

ume framework for linear and nonlinear hyperbolic systems, see e.g. (Toro 2001; Toro & Titarev 2002;

Titarev & Toro 2002; Schwartzkopff, Dumbser & Munz 2002; Käser & Iske 2005).

The proposed numerical method is a straight-forward extension of the ADER-DG scheme pre-

sented in (Dumbser 2005; Dumbser & Munz 2005; Käser & Dumbser 2005) for the homogeneous

case but this time also taking into account the source terms, both, in space and time discretization.

The resulting ADER-DG scheme is again theoretically arbitrarily accurate in space and time, where

temporal accuracy automatically matches the spatial accuracy.

The paper is structured as follows. In Section 2 we introduce the system of the elastic wave equations

in the non-conservative velocity-stress formulation with source terms. The proposed DG scheme is

presented in Section 3 together with the ADER approach where attention is mainly paid to the dis-

cretization of the externally given source term such that globally arbitrary accuracy in space and time

can be maintained. For a more exhaustive presentation of the ADER-DG approach for the homoge-

neous case see (Käser & Dumbser 2005).

In Section 4 we investigate numerically the convergence rates of the scheme on the example of a

fourth and sixth order ADER-DG scheme with an analytically given source term that is constructed

such that the exact solution of the governing PDE is known. In Section 5 we show the application of

the method for two classical test problems where non-trivial analytical solutions exist, namely Lamb’s
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problem and Garvin’s problem. For both test problems, unstructured meshes are very useful since they

allow an easy refinement of the mesh close to the surface in order to capture well the surface waves.

2 ELASTIC WAVE EQUATIONS

The propagation of waves in an elastic medium is based on the theory of linear elasticity (Aki &

Richards 2002; Bedford & Drumheller 1994). Combining the definition of strain caused by deforma-

tions (Hooke’s law) and the equations of the dynamic relationship between acceleration and stress, the

elastic wave equations can be derived as shown in (LeVeque 2002). Considering the two-dimensional

elastic wave equation for an isotropic medium in velocity-stress formulation and admitting external

sources (e.g. moments or body forces) leads to a linear hyperbolic system of the form

∂
∂tσxx − (λ + 2µ) ∂

∂xv − λ ∂
∂yw = S1(x, y, t) ,

∂
∂tσyy − λ ∂

∂xv − (λ + 2µ) ∂
∂yw = S2(x, y, t) ,

∂
∂tσxy − µ( ∂

∂xw + ∂
∂yv) = S3(x, y, t) ,

ρ ∂
∂tv − ∂

∂xσxx − ∂
∂yσxy = ρS4(x, y, t) ,

ρ ∂
∂tw − ∂

∂xσxy − ∂
∂yσyy = ρS5(x, y, t) ,

(1)

where λ and µ are the Lamé constants and ρ is the mass density of the material. The normal stress

components are given by σxx and σyy , and the shear stress is σxy . The components of the particle

velocities in x- and y-direction are denoted by v and w, respectively.

The stresses and velocities are always assumed to be functions of time and space. The physical

properties of the material are functions of space but are constant in time, i.e. λ = λ(�x), µ = µ(�x), and

ρ = ρ(�x), with �x = (x, y), in order to describe heterogeneous material.

For the sake of generality, we use the more compact form

∂up

∂t
+ Apq

∂uq

∂x
+ Bpq

∂uq

∂y
= Sp(x, y, t), (2)

where up is the vector of state, i.e. in the case of the elastic wave equations up = (σxx, σyy, σxy, v, w)T

and Sp(x, y, t) is the vector of space-time dependent source terms as given in (1). Here, we use

classical tensor notation which implies summation over each index appearing twice. The matrices

Apq = Apq(�x) and Bpq = Bpq(�x) are the space dependent Jacobian matrices as given in (Käser &

Dumbser 2005).
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3 DISCRETIZATION OF SOURCE TERMS WITHIN ADER-DG SCHEMES

For the details of the construction of the numerical scheme for the wave propagation operator on the

left hand side of (2) we refer to (Käser & Dumbser 2005). In this article we focus on the discretization

of the source terms on the right hand side of (2). In the presence of space-time dependent source terms

we need to carefully incorporate them into the ADER Discontinuous Galerkin framework in order to

maintain globally arbitrary accuracy in space and time.

As in (Käser & Dumbser 2005) the computational domain Ω ∈ R
2 is divided in conforming

triangular elements T (m) being addressed by a unique index (m) and the numerical solution of (2) is

represented as (
u

(m)
h

)
p
(ξ, η, t) = û

(m)
pl (t)Φl(ξ, η). (3)

Furthermore, we suppose the matrices Apq and Bpq to be locally constant inside an element T (m).

3.1 Space-Time Continuous Source Terms

In order to perform high order time-discretization of the scheme we proceed as in the homogeneous

case (Käser and Dumbser, 2005), replacing time-derivatives by space-derivatives using the governing

PDE. However, the Cauchy-Kovalewski procedure gets more complicated if source terms are present.

The original PDE (2) rewritten in ξη-coordinates of the reference element results in

∂up

∂t
+ A∗

pq

∂uq

∂ξ
+ B∗

pq

∂uq

∂η
= Sp. (4)

The k-th time derivative as a function of pure space derivatives in the ξη-reference system is the result

of the Cauchy-Kovalewski procedure applied to (4) and is given by

∂k

∂tk
up = (−1)k

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k

uq +
k−1∑
s=0

(−1)s
(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η

)s ∂k−s−1

∂tk−s−1
Sq. (5)

Proof. We proof eqn. (5) by complete induction. For k = 0 it is trivially fulfilled, so we start with

k = 1:

∂

∂t
up = (−1)

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)
uq + Sp (6)

Eqn. (6) is nothing else than eqn. (4) rewritten in a different form, so for k = 1 formula (5) holds. If

we now suppose that it holds for k, one can easily proof that from this assumption it will also hold for

k + 1. Deriving (5) with respect to time yields

∂k+1

∂tk+1
up = (−1)k

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k ∂

∂t
uq +

k−1∑
s=0

(−1)s
(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η

)s ∂k−s

∂tk−s
Sq, (7)
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which by using (6) becomes

∂k+1

∂tk+1
up = (−1)k

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k (
(−1)

(
A∗

qr

∂

∂ξ
+ B∗

qr

∂

∂η

)
ur + Sq

)

+
k−1∑
s=0

(−1)s
(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η

)s ∂k−s

∂tk−s
Sq . (8)

Rearranging terms yields

∂k+1

∂tk+1
up = (−1)k+1

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k+1

uq + (−1)k

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k

Sq

+
k−1∑
s=0

(−1)s
(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η

)s ∂k−s

∂tk−s
Sq, (9)

and finally

∂k+1

∂tk+1
up = (−1)k+1

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k+1

uq +
k∑

s=0

(−1)s
(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η

)s ∂k−s

∂tk−s
Sq. (10)

In order to be able to perform many computations in the reference element TE , we represent

the source-terms in a space-time basis over the space-time element TE × [tn; tn + ∆t]. The basis is

constructed via tensor product of the spatial basis functions Φm(ξ, η) used already in (3) and some new

temporal basis functions Ψl(t) for which we choose classical Legendre polynomials in the interval of

one time step [tn; tn + ∆t]:

Sp(ξ, η, t) = ŜplmΨl(t)Φm(ξ, η). (11)

Given the source term Sp(ξ, η, t) by some analytic function or from discrete measurement data, we

first perform L2 projection in order to compute the unknown coefficientsŜplm in (11). In the following,

〈., .〉(·) denotes the inner product over the domain (·).

〈Sp (ξ, η, t) ,ΨjΦk〉TE×[tn;tn+∆t] = Ŝplm 〈ΨjΦk,ΦmΨl〉TE×[tn;tn+∆t] (12)

Since spatial and temporal integration are independent due to the tensor product formulation, we get

〈Sp (ξ, η, t) ,ΨjΦk〉TE×[tn;tn+∆t] = Ŝplm 〈Ψj,Ψl〉[tn;tn+∆t] 〈Φm,Φk〉TE
. (13)

Due to the orthogonality of the basis functions, the appearing mass matrices are diagonal and can be

trivially inverted.

As in (Käser & Dumbser 2005) we now develop the solution of (2) in a Taylor series in time up to

order N ,

up(ξ, η, t) =
N∑

k=0

tk

k!
∂k

∂tk
up(ξ, η, 0), (14)
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and replace time derivatives by space derivatives, using (3), (5) and (11):

up(ξ, η, t) =
N∑

k=0

tk

k!
(−1)k

(
A∗

pq

∂

∂ξ
+ B∗

pq

∂

∂η

)k

Φlûql(0)

+
k−1∑
s=0

(−1)s
(

A∗
pq

∂

∂ξ
+ B∗

pq

∂

∂η

)s ∂k−s−1

∂tk−s−1
Ψl(t)Φm(ξ, η)Ŝqlm. (15)

This approximation can now be projected onto each basis function in order to get an approximation

of the evolution of the degrees of freedom during one time step from time level n to time level n + 1.

We obtain ∫ ∆t

0
ûpl(τ)dτ = Iplqm(∆t)ûqm(0) + IS

plqom(∆t)Ŝqom, (16)

with

Iplqm(∆t) =

〈
Φn,

N∑
k=0

∆t(k+1)

(k+1)! (−1)k
(
A∗

pq
∂
∂ξ + B∗

pq
∂
∂η

)k
Φm(ξ)

〉
TE

〈Φn,Φl〉TE

(17)

as in (Käser & Dumbser 2005) and an additional tensor taking into account the source term during

time integration,

IS
plqom(∆t) =

〈
Φn,

N∑
k=0

∆t(k+1)

(k+1)!

k−1∑
s=0

(−1)s
(
A∗

pq
∂
∂ξ + B∗

pq
∂
∂η

)s
Φm

∂k−s−1

∂tk−s−1 Ψo

〉
TE

〈Φn,Φl〉TE

. (18)

To facilitate notation we skip the index (m) for the two tensors as given by (17) and (18) since they

may vary from one element to another depending on the variation of the Jacobian matrices A∗pq and

B∗
pq .

With those definitions we finally obtain the fully discrete ADER-DG scheme, which differs from

the one given in (Käser & Dumbser 2005) only with respect to the correction terms on the left hand

side and the source terms on the right hand side of the equation.
[(

û
(m)
pl

)n+1
−

(
û

(m)
pl

)n
]
|J |Mkl

+ 1
2

3∑
j=1

T j
pq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)−1 |Sj|F j,0

kl ·
(
Islmn(∆t)

(
û

(m)
mn

)n
+ IS

slmon(∆t)
(
Ŝ

(m)
mon

)n)

+ 1
2

3∑
j=1

T j
pq

(
A

(m)
qr +

∣∣∣A(m)
qr

∣∣∣) (T j
rs)−1 |Sj|F j,i

kl ·
(
Islmn(∆t)

(
û

(mj)
mn

)n
+ IS

slmon(∆t)
(
Ŝ

(mj)
mon

)n)

− |J |
(
A∗

pqK
ξ
kl + B∗

pqK
η
kl

)
·
(
Islmn(∆t)

(
û

(m)
mn

)n
+ IS

slmon(∆t)
(
Ŝ

(m)
mon

)n)

=
tn+∆t∫

tn

∫
T (m)

Φk Sp(x, y, t) dV dt = Mkl ·
∆t∫
0

Ψo(τ) dτ · Ŝ(m)
pol .

(19)
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Note that τ = t − tn. On rectangular elements, the scheme takes the same form except that one

has to consider the contribution of four edges instead of three in the case of triangles. For the efficient

evaluation of expressions (17) and (18) the same algorithm as presented by Käser and Dumbser (2005)

can be used.

3.2 Point Sources

In the previous subsection we described the discretization of source terms that are continuous in space

and time. However, many geophysical applications as well as classical test cases with analytical solu-

tions, such as e.g. Lamb’s problem or Garvin’s problem, require point sources that are characterized by

a Dirac Delta distribution in space and a so-called source time function ST
p (t). Within the ADER-DG

framework, it is straightforward to include such point sources at arbitrary positions in the compu-

tational domain. It is not necessary that the Delta distributions coincide with a grid point since the

arising integrals can always be evaluated analytically using the properties of the Delta distribution.

The source terms considered in this subsection thus have the form

Sp(x, y, t) = ST
p (t) · δ(�x − �xs), (20)

where δ(�x) denotes the usual Dirac Delta distribution with its well-known properties. Since the source

term is given in space by the Delta distribution, we only have to project the time-dependent part, i.e.

the source time function ST
p (t), onto some temporal basis functions similar to subsection 3.1 by simply

requiring that
〈
Ψj, S

T
p (t)

〉
[tn;tn+∆t]

=
〈
Ψj, ŜplΨl

〉
[tn;tn+∆t]

, (21)

which leads to the following discrete representation of the point source:

Sp(x, y, t) = ŜplΨl(t) · δ(�x − �xs). (22)

Similar to eqn. (16) we obtain the following expression that can be directly inserted on the left hand

side of eqn. (19), ∫ ∆t

0
ûpl(τ)dτ = Iplqm(∆t)ûqm(0) + IS

plqm(∆t)Ŝqm, (23)

with Iplqm(∆t) still given by eqn. (17) and a correction term ISplqm(∆t) due to the point source given

by

IS
plqm(∆t) =

N∑
k=0

∆t(k+1)

(k+1)!

k−1∑
s=0

(
A∗

pq
∂
∂ξ + B∗

pq
∂
∂η

)s
Φn

(
�ξs

)
· ∂k−s−1

∂tk−s−1 Ψm

|J | 〈Φn,Φl〉TE

. (24)

if the point source is located inside the corresponding element, i.e. �xs ∈ T (m), or zero elsewhere.

Note that �ξs is the location of the point source in the reference element. Eqn. (24) follows directly
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from (18) using the properties of the Delta distribution and its derivatives. The right hand side of eqn.

(19) reduces to zero except of those elements that contain the point sources, where it then becomes

tn+∆t∫
tn

∫

T (m)

Φk Sp(x, y, t) dV dt = Φk (�xs) ·
tn+∆t∫
tn

ST
p (t)dt. (25)

Since the test functions are evaluated exactly at the source position �xs, the point sources may be

located at any point inside the computational domain. If the point �xs coincides with a grid point or

cell edge, only one of the adjacent elements is allowed to contain the source. The choice, however, is

arbitrary.

4 CONVERGENCE STUDY

In order to validate the discretization of the source terms we study the convergence rates on the ex-

ample of a fourth and sixth order ADER-DG scheme on a regular triangular grid such as presented in

(Käser & Dumbser 2005). The source term is constructed such that the solution of the elastic wave

equations with source terms (2) becomes the space-time periodic function

up(x, y, t) = U0
p · sin

(
2π
λx

p

x

)
· sin

(
2π
λy

p
y

)
· sin

(
2π
Tp

t

)
. (26)

For the amplitudes, spatial wave lengths and time periods of the five variables we choose in our par-

ticular example the vectors

U0
p =

(
1 2 3 4 5

)T
, (27)

λx
p = λy

p =
(

331
3 50 100 50 331

3

)T
, (28)

Tp =
(

331
3 50 100 10 5

)T
. (29)

The spatial and temporal derivatives of the imposed solution (26) can be computed as

∂

∂x
up(x, y, t) = U0

p · 2π
λx

p

· cos
(

2π
λx

p

x

)
· sin

(
2π
λy

p
y

)
· sin

(
2π
Tp

t

)
, (30)

∂

∂y
up(x, y, t) = U0

p · 2π
λy

p
· sin

(
2π
λx

p

x

)
· cos

(
2π
λy

p
y

)
· sin

(
2π
Tp

t

)
, (31)

∂

∂t
up(x, y, t) = U0

p · 2π
Tp

· sin
(

2π
λx

p

x

)
· sin

(
2π
λy

p
y

)
· cos

(
2π
Tp

t

)
, (32)

and thus the source terms are directly given by the governing equations (2) themselves. The two-

dimensional elastic wave equations in (1) are solved on a square shaped domain Ω = [−50, 50] ×
[−50, 50] ∈ R

2 with four periodic boundary conditions up to the final time t = 100. This means that

the waves in the five variables oscillate for 3, 2, 1, 10 and 20 periods, respectively. Especially due
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to the rather high temporal frequencies of the last two variables, we expect the accuracy of the time

discretization to be of great importance. We note that the initial condition is zero everywhere which is

hence also the exact solution after t = 100. The CFL number is set in all computations to 70% of the

stability limit 1
2N+1 of Runge-Kutta DG schemes.

Two different numerical experiments are performed. First, the scheme is implemented as given by

equation (19). Second, we neglect the influence of the source terms in the Cauchy-Kovalewski proce-

dure by simply setting IS
slmon to zero in (19). This would mean that the source term is only considered

on the right hand side but not inside the wave propagation operator on the left hand side. For the

regular mesh that we are using for this test case, the refinement is simply controlled by changing the

number NG of grid cells in each dimension.

In Table 1 the errors in L∞ and L2 norm of the vertical velocity v are given as a function of NG.

The corresponding numerical convergence orders OL∞ and OL2 are determined by two successively

refined meshes. Furthermore, we present the total number Nd of degrees of freedom.

We clearly see from table 1 that the designed fourth and sixth order of accuracy has been reached,

respectively, in the case where we correctly include the source term in the Cauchy-Kovalewski proce-

dure. However, if we neglect it, only second order of accuracy is retrieved globally. This result clearly

emphasizes the importance of highly accurate time-discretization for time-dependent problems.

5 NUMERICAL EXAMPLES WITH ANALYTICAL SOLUTIONS

Here we present two well-known test cases of computational seismology in order to demonstrate the

performance of the proposed ADER-DG scheme considering two different kinds of point sources,

namely a vertical force and an explosive source, respectively, in a homogeneous elastic half-space

with a free surface. For both test cases there are analytical reference solutions available. In addition to

the validation of the discretization of the source terms, the implementation of the correct free surface

boundary conditions is confirmed.

5.1 Lamb’s Problem

A classical test case to validate the implementation of free surface boundary conditions and point

sources is Lamb’s Problem (Lamb 1904), consisting in a vertical (with respect to the surface) point

force acting on the free surface. The solution of Lamb’s Problem for a plane surface can be computed
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Table 1. Convergence rates of v for 4th and 6th order ADER-DG schemes with (top) and without (bottom)

including the source terms in the Cauchy-Kovalewski procedure.

ADER-DG O4

NG L∞ OL∞ L2 OL2 Nd

10 3.713 · 10−2 − 1.243 · 10−0 − 4000

20 6.821 · 10−4 5.8 1.942 · 10−2 6.0 16000

40 1.891 · 10−5 5.2 4.113 · 10−4 5.6 64000

50 5.801 · 10−6 5.3 1.294 · 10−4 5.2 100000

10 3.363 · 10−2 − 1.190 · 10−0 − 4000

20 1.000 · 10−3 5.1 2.560 · 10−2 5.5 16000

40 1.004 · 10−4 3.3 3.569 · 10−3 2.8 64000

50 5.844 · 10−5 2.4 2.292 · 10−3 2.0 100000

ADER-DG O6

NG L∞ OL∞ L2 OL2 Nd

5 7.556 · 10−3 − 2.217 · 10−1 − 2100

10 2.376 · 10−4 5.0 7.600 · 10−3 4.9 8400

20 7.782 · 10−7 8.3 1.720 · 10−5 8.8 33600

30 4.752 · 10−8 6.9 9.750 · 10−7 7.1 75600

5 8.571 · 10−3 − 2.865 · 10−1 − 2100

10 1.129 · 10−3 2.9 4.158 · 10−2 2.8 8400

20 2.290 · 10−4 2.3 8.603 · 10−3 2.3 33600

30 7.400 · 10−5 2.8 3.084 · 10−3 2.5 75600

analytically and can hence be used for comparison with numerical results. In this paper we use the

FORTRAN code EX2DDIR of Berg and If� to compute the exact solution of the seismic 2-D response

from a vertical directional point source in an elastic half space with a free surface. The code EX2DDIR

is based on the Cagniard-de Hoop technique (de Hoop 1960) and allows the use of an arbitrary source

time function for displacements or velocities. Considering the accuracy of a numerical method and the

correct treatment of sources and free boundary conditions Lamb’s Problem poses a challenging test

case in particular for the non-dispersive Rayleigh waves propagating along a plane free surface of an

homogeneous half space.

�Laboratory of applied mathematical physics, Technical University of Denmark, Lyngby.
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The setup of the physical problem is chosen as in the paper of Komatitsch and Vilotte (1998), who

solved this problem using the Spectral Element method, see e.g. (Komatitsch & Tromp 1999; Ko-

matitsch & Tromp 2002).

We use a homogeneous elastic medium with a P-wave velocity of cp = 3200m s−1, an S-wave

velocity of cs = 1847.5m s−1 and a mass density of ρ = 2200 kg m−3. The numerical model with

origin (0, 0) at the left bottom corner is 4000m wide and has a height of 2000m on the left boundary.

The tilt angle of the free surface is φ = 10◦. The directional point source, acting as a force perpendicu-

lar to this tilted surface, is located at the free surface at �xs = (1720.00, 2303.28)T . The two receivers

are located at (2694.96, 2475.18) and (3400.08, 2599.52) such that their distances from the source

along the surface are 990m and 1706m, respectively. On the left, right and bottom boundaries of the

model we use then open boundary conditions as described in (Käser & Dumbser 2005). We use a trian-

gular mesh such that the left and right boundaries of the model are discretised by 30 triangle edges and

the bottom and top boundaries by 50 triangles, similar to Komatitsch and Vilotte (1998). The resulting

mesh is displayed in Fig. 1 (top) and consists of 3416 triangles. In order to avoid undesired effects of

possibly reflected wave energy at the right model boundary, we extended the mesh up to a width of

4700m for the numerical computations. The source time function that specifies the temporal variation

of the point source is a Ricker wavelet given by

ST (t) = a1

(
0.5 + a2(t − tD)2

)
ea2(t−tD)2 , (33)

where tD = 0.08 s is the source delay time and a1 = −2000 kg m−2 s−2 and a2 = −(πfc)2 are

constants determining the amplitude and frequency of the Ricker wavelet of central frequency fc =

14.5 Hz.

The final resulting source vector Sp(x, y, t) acting on the governing PDE (1) or (2), respectively, taking

into account also the tilt angle φ is

Sp(x, y, t) =
(

0 0 0 − sin(φ) cos(φ)
)T

· ST (t)
ρ

· δ (�x − �xs) . (34)

The wave propagation is simulated until time Tend = 1.3 s when all waves have already passed the two

receivers. For the results shown in this paper, a tenth order ADER-DG O10 scheme with a Courant

number of CFL = 0.5 is used. In order to reach the final simulation time Tend we need 5915 time

steps. We then perform the same simulation on a refined mesh, where the mesh spacing is gradually

decreasing towards the free surface, see Fig. 1(bottom). This problem-adapted mesh helps to resolve

surface effects, such as the Rayleigh waves, with higher accuracy and requires 8836 time steps to

reach Tend. In Fig. 1 we present the snapshots of the vertical velocity component v of the seismic

wave field at t = 0.6s on a regular (top) and refined (bottom) triangular mesh. We remark, that the

total number of triangles used in both simulations is the same. Visually, there is a perfect match be-
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tween both numerical solutions. In Fig. 2 we present the unscaled seismograms obtained from our

numerical simulations, as recorded by receiver 1 and 2, respectively, together with the analytical so-

lution provided by EX2DDIR. The analytical and numerical solutions match extremely well, such

that the lines basically are not distinguishable on this scale. Therefore, the residuals are also plotted

and are amplified by a factor of 10 in order to make differences more visible. The maximum relative

error on the regular mesh remains always less than 1%, however, it is considerably smaller on the

surface-refined mesh where it is about 0.3%. We conclude from this example that correctly including

the source terms in the Cauchy-Kovalewski procedure is also beneficial with respect to accuracy in

the context of point sources. In particular, for point sources the additional computational effort is very

small, as the Cauchy-Kovalewski procedure with source terms appears only in the triangle, where the

point sources is located. In addition, the accurate solution of Lamb’s problem with the ADER-DG

method confirms, that the implementation of free surface boundary conditions as suggested in (Käser

& Dumbser 2005) leads to the correct physical behaviour of elastic surface waves.

5.2 Garvin’s Problem

Another classical test case to validate the implementations of free surface boundary conditions and

point sources is Garvin’s Problem (Garvin 1956), which consists in an explosive point source located

below, but close to the surface. As for Lamb’s problem the solution of Garvin’s Problem for a plane

surface can be computed analytically. In this paper we use the FORTRAN code EX2DVAEL of Berg

and If to compute the exact solution of the seismic 2-D response from an explosive point source in an

elastic half space with a free surface. Similar to Lamb’s problem, the computation of this reference

solution is based on the Cagniard-de Hoop technique (de Hoop 1960) and allows the use of an arbitrary

source time function for displacements or velocities.

The setup of the physical problem as well as all the numerical parameters remain essentially the

same as for Lamb’s problem presented in the previous subsection 5.1. Especially the two receivers

remain at the same locations. However, with respect to the source location in Lamb’s problem, the

source position is now located 100m below the free surface (in normal direction to the free surface),

such that �xs = (1737.36, 2204.80)T . The source time function that specifies the temporal variation

of the point source is again given by (33) with the parameters tD = 0.08 s, a1 = 109 N m−2 s−1 and

a2 = −(πfc)2. The central frequency fc = 14.5 Hz remains unchanged. The finally resulting source

vector Sp(x, y, t) acting as an explosive source on the governing PDE (1) or (2), respectively, is then

given by

Sp(x, y, t) =
(

1 1 0 0 0
)T

· ST (t) · δ (�x − �xs) . (35)
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The wave propagation is again simulated with a tenth order ADER-DG O10 scheme at a Courant

number of CFL = 0.5 until time Tend = 1.3 s on the same meshes as already used for Lamb’s

problem. In Fig. 3 we present a snapshot of the vertical velocity component v of the seismic wave field

at t = 0.5s on the regular triangular mesh (top) and the problem-adapted, refined mesh (bottom). The

two numerical solutions in Fig. 3 again match perfectly. In Fig. 4 we present the unscaled seismograms

obtained from our numerical simulations at receiver 1 and 2, respectively, as well as the analytical

solution. The residuals are also plotted and are amplified by a factor of 10 in order to make the visible.

The maximal relative error again is of the order of 1%.

Having a closer look at the seismograms we see the effect of the mesh refinement. Considering

the arrival of the direct wave, mesh refinement decreases the residuals similar to the seismograms for

Lamb’s problem in Fig. 2. However, if we look at the arrival of the generated surface wave for Garvin’s

problem, the residuals seem to slightly increase with mesh refinement. This effect is not completely

clear, but might be due to the fact that during the simulation we are trying to approximate the spatial

Dirac Delta distribution of the source term by a polynomial of degree 9. Due the mesh refinement,

the position of the Dirac Delta impulse inside the enclosing triangle will change with respect to the

reference triangle. Therefore, it might be possible, that the polynomial approximation becomes worse

depending on the position of the Dirac Delta inside the triangle. However, this does not seem to affect

the accuracy of the direct wave, but only the accuracy of the surface wave. We mention that this effect

is relatively small, considering that we amplify the residuals by a factor of 10.

6 DISCUSSION AND CONCLUSIONS

We extended the ADER-DG method for the solution of linear hyperbolic systems on unstructured

triangular meshes, as described e.g. in (Dumbser 2005; Dumbser & Munz 2005; Käser & Dumbser

2005) for the homogeneous case, to handle space-time dependent source terms.

We have shown numerical convergence studies with smooth source terms in space and time for

fourth and sixth order ADER-DG schemes on regular triangular meshes confirming that uniformly

very high accuracy in space and time are maintained when the source term is correctly included in

the underlying Cauchy-Kovalewski procedure. Furthermore, we demonstrated that the global order of

accuracy cannot be maintained if the source term is not correctly included in the time discretization,

which clearly points out the necessity of treating smooth source terms according to the desired order

of the numerical scheme.

Special attention has also been paid to the treatment of point sources, which can be located at

any position inside the computational domain, i.e. inside a triangular cell. To this end we are using
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the properties of the Dirac Delta distribution in combination with evaluating the test functions at the

source positions.

Furthermore the demonstrated test cases of Lamb’s and Garvin’s problem confirm that the free

surface boundary condition, as introduced in previous work (Käser & Dumbser 2005), is treated cor-

rectly. Therefore, we claim that the newly proposed ADER-DG method can very well serve as an

attractive alternative to the currently very popular Spectral Element method in particular in the field

of computational seismology.
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Figure 1. Vertical velocity v at t = 0.6s for Lamb’s problem.

ADER-DG O10 scheme on a regular (top) and refined (bottom) triangular mesh.
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Figure 2. Seismograms of the normal and tangential velocity components w.r.t. the surface at the two receivers

1 and 2 for Lamb’s problem.
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Figure 3. Vertical velocity v at t = 0.6s for Garvin’s problem.

ADER-DG O10 scheme on a regular (top) and refined (bottom) triangular mesh.
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Figure 4. Seismograms of the normal and tangential velocity components w.r.t. the surface at the two receivers

1 and 2 for Garvin’s Problem.


