
Python 2.2 quick
reference

John W. Shipman
2004-08-25 17:39

Table of Contents
1. What is Python? ... 2
2. Starting Python .. 2
3. Line syntax .. 3
4. Reserved words ... 3
5. Basic types .. 3
6. Numeric types ... 3

6.1. Integers: int and long types ... 3
6.2. The float type ... 4
6.3. The complex type ... 4
6.4. Intrinsics for numbers .. 4

7. The sequence types .. 5
7.1. Intrinsic functions common to all sequences .. 5
7.2. Strings: the str and unicode types ... 6
7.3. The list type ... 11
7.4. The tuple type ... 13

8. The dictionary type .. 13
8.1. Operations on dictionaries .. 14

9. Input and output: File objects .. 14
10. Expressions .. 15

10.1. What is a predicate? ... 16
11. Built-in functions for multiple types ... 16
12. Simple statements ... 18

12.1. Assignment ... 18
12.2. The assert statement ... 18
12.3. The del statement ... 18
12.4. The exec statement ... 19
12.5. The from statement ... 19
12.6. The global statement ... 19
12.7. The import statement ... 19
12.8. The pass statement ... 20
12.9. The print statement ... 20

13. Compound statements .. 20
13.1. Boolean values: true and false ... 20
13.2. The if construct: choice ... 21
13.3. The for construct: iteration .. 21
13.4. The while construct: looping ... 21
13.5. The break statement ... 21
13.6. The continue statement ... 22

1Python 2.2 quick referenceNew Mexico Tech Computer Center

About this document
This document has been generated from XSL (Extensible Stylesheet Language) source with RenderX XEP Formatter, version 3.7.3 Client Academic.

For more information about XSL, visit the official World Wide Web Consortium XSL homepage: http://www.w3.org/Style/XSL

For more information about RenderX and XEP, visit the RenderX site: http://www.renderx.com

13.7. The try construct: catching exceptions .. 22
13.8. The raise statement: throwing exceptions .. 23

14. Exceptions ... 23
15. Defining and calling functions ... 24

15.1. Calling a function ... 24
16. Create your own types: The class construct ... 25

16.1. __init__(): The class constructor .. 26
16.2. Special method names .. 27
16.3. Intrinsics for objects ... 29

17. Recent features ... 29
17.1. Iterators ... 29
17.2. Generators ... 30
17.3. Static methods ... 30
17.4. Class methods .. 31

18. The Python debugger ... 31
18.1. Starting up pdb .. 31
18.2. Functions exported by pdb ... 32
18.3. Commands available in pdb ... 32

19. Commonly used modules ... 33
19.1. The math module .. 34
19.2. The cmath module: complex math .. 34
19.3. The types module .. 35
19.4. The string module .. 36
19.5. Regular expression matching with the re module .. 37
19.6. The sys module .. 40
19.7. The random module: random number generation .. 40
19.8. The time module: dates and times .. 41
19.9. The os module: operating system interface .. 43
19.10. The stat module: file statistics ... 45
19.11. The path module: file and directory interface .. 46
19.12. Low-level file functions in the os module .. 47

1. What is Python?
Python is a recent, general-purpose, high-level programming language. It is freely available and runs
pretty much everywhere.

• For local documentation, see the Python help page. [http://www.nmt.edu/tcc/help/lang/python/]

• Complete documentation will be found at the python.org homepage [http://www.python.org/].

• See the online version of this manual [http://www.nmt.edu/tcc/help/pubs/python22/], or the
print version [http://www.nmt.edu/tcc/help/pubs/python22/python22.pdf].

2. Starting Python
The Python language can be run interactively in “calculator mode” using the command:
python

If you write a Python script named filename.py, you can execute it using the command
python filename.py

Under Unix, you can also make a script self-executing by placing this line at the top:
#!/usr/local/bin/python

New Mexico Tech Computer CenterPython 2.2 quick reference2

http://www.nmt.edu/tcc/help/lang/python/
http://www.python.org/
http://www.nmt.edu/tcc/help/pubs/python22/
http://www.nmt.edu/tcc/help/pubs/python22/python22.pdf

3. Line syntax
The comment character is #; comments are terminated by end of line.

Long lines may be continued by ending the line with a backslash (\), but this is not necessary if there
is an open (, [, or {.

4. Reserved words
and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from,
global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, and yield.

5. Basic types
Here is a list of the most common Python types. For a full list, see the types module below.

Table 1. Basic Python types

ExamplesValuesType name

42, -3Integers in the range [-2147483648, 2147483647].
See the int type below.

int

42L, -3L, 10000000000000LIntegers of any size, limited only by total memory
size. See the long type below.

long

-3.14159, 6.0235e23Floating-point numbers. See the float type below.float

(3.2+4.9j), (0+3.42e-3j)Complex numbers. See the complex type below.complex

'Fred', "", '''...''',
"""..."""

Ordinary strings of ASCII characters. If you use
three sets of quotes around a string, it can extend
over multiple lines. See the str type below.

str

u'Fred', u'\u03fa'Strings of Unicode characters, an extended interna-
tional character set. See the unicode type below.

unicode

['red', 23], [], [(x,y) for
x in range(10,30,5) for
y in ("a", "b")]

A sequence of values that is mutable, that is, its
contained values can be changed, added, or deleted.
See list type (p. 11) below.

list

('red', 23), (),
("singleton",)

A tuple is a sequence of values that is immutable
(cannot be modified). See tuple type (p. 13) below.

tuple

NoneNone is a special, unique value that may be used
as a placeholder where a value is expected but there
is no obvious value. For example, None is the value
returned by functions if they don't return a specific
value.

6. Numeric types
Python has four types to represent numbers: int, long, float, and complex.

6.1. Integers: int and long types
Values of int and long types represent whole numbers. The int type holds numbers in the range [-
2,147,483,648, 2,147,483,647], while the precision of the long type is limited only by the available storage.

3Python 2.2 quick referenceNew Mexico Tech Computer Center

Starting in version 2.2, Python will automatically switch to long type when it is needed to avoid overflow.

The factory functions used to convert other types to integer types are:

int(n_s)
If n_s is any kind of number, or string containing a number, this function converts it to type int.

long(n_s)
Converts a number or string to type long.

6.2. The float type
Values of this type represent real numbers, with the usual limitations of IEEE floating point type: it
cannot represent very large or very small numbers, and the precision is limited to only about 15 digits.

Functions:

float(n_s)
Converts a number or string n_s to a floating-point number.

For common transcendental functions like cosine and exponential, see the math module below.

6.3. The complex type
A complex number has two parts, a real component and and imaginary component.

To refer to the components of an imaginary number I:

The real component of I.I.real

The imaginary component.I.imag

Functions:

complex(r[,i])
The r argument is the real component, and the i second argument is the imaginary component.
Each argument can be either a string or a number. For example, complex(3.2,4.9) produces
the value (3.2+4.9j).

6.4. Intrinsics for numbers
By intrinsics we mean built-in functions of Python. These functions operate on all the different kinds of
numbers:

abs(x)
Returns the absolute value of x. For complex values, returns the magnitude.

coerce(a,b)
Returns a tuple (a',b') of the arguments coerced to the same type.

divmod(a,b)
Returns a tuple (q, r) where q is the quotient a/b and r is the remainder a%b.

pow(x,y[,z])
Computes x to the y power. If the optional third argument is given, it computes (x**y)%z.

round(x)
Returns x rounded up or down to the nearest integral float, e.g., round(-3.5) yields -4.

New Mexico Tech Computer CenterPython 2.2 quick reference4

For common transcendental functions like square root and logarithm, see the math module below.

7. The sequence types
The next four types described (str, unicode, list and tuple) are collectively referred to as sequence
types.

All of them represent an ordered set in the mathematical sense, that is, a collection of things in a specific
order.

• A value of str (8-bit string) or unicode (Unicode string) type represents a sequence of zero or more
characters. Python strings are immutable or atomic, that is, their contents cannot be modified in
place.

• A list is a sequence of zero or more values of any type (or combination of types). Lists are mutable,
meaning that you can make changes to them by deleting, inserting, or replacing elements.

• A tuple is also a sequence of zero or more values of any type, but it is immutable: once you have
formed a tuple, you cannot delete, insert, or replace any of its elements.

7.1. Intrinsic functions common to all sequences
All four of the basic sequence types (str, unicode, list, and tuple) share a common set of functions.
In the table below, S means any sequence:

The number of elements in S.len(S)

The largest element of S.max(S)

The smallest element of S.min(S)

True if any members of S are equal to x. A predicate function, like the “>=” and
other comparison operators..

x in S

True if none of the elements of S are equal to x.x not in S

Concatenate two sequences.S1+S2
Convert the members of S to a tuple.tuple(S)

Convert S to a list.list(S)

A new sequence containing n copies of the contents of S. For example, [0]*5 is
a list of five zeroes.

S*n

Subscripting: Refers to element i of sequence S, counting from zero. For example,
"abcd"[2] is "c". A negative index value is counted from the end back toward

S[i]

the front. Element -1 refers to the last element, -2 to the next-to-last, and so on, so
"abcdef"[-1] is "f".

Retrieve another sequence that is a slice of sequence S starting at element i
(counting from zero) and going up to but not including element j. For example,

S[i:j]

"abcdef"[2:4] is "cd". You can omit i to start the slice at the beginning of s;
you can omit j to take a slice all the way to the end of s. For example, "ab-
cdef"[:3] is "abc", and "abcdef"[3:] is "def". See the diagram below. You
can even omit both parts; S[:] gives you a new sequence that is a copy of the old
one.

5Python 2.2 quick referenceNew Mexico Tech Computer Center

a b c d e f
[−6][−5][−4][−3][−2][−1]

[0] [1] [2] [3] [4] [5] [6]

[2:5]

[3:][:3]

In the diagram above, if string s is "abcdef", slice s[2:5] is "cde", slice s[:3] is "abc", and s[3:]
is "def".

7.2. Strings: the str and unicode types
Python has two string types. Type str holds strings of zero or more 8-bit characters, while unicode
strings provide full support of the expanded Unicode character set (see the Unicode homepage
[http://www.unicode.org/]).

7.2.1. String constants

There are many forms for string constants:

• '...': Enclose the string in single quotes.

• "...": Enclose it in double quotes.

• '''...''': Enclose it between three single quotes in a row. The difference is that you can continue
such a string over multiple lines, and the line breaks will be included in the string as newline char-
acters.

• """...""": You can use three sets of double quotes. As with three sets of single quotes, line breaks
are allowed and preserved as "\n" characters.

The above forms give you regular strings. To get a unicode string, prefix the string with u. For example:
u"klarn"
is a five-character Unicode string.

In addition, you can use any of these escape sequences inside a string constant:

A backslash at the end of a line is ignored.\newline

Backslash (\)\\

Closing single quote (')\'

Double-quote character (")\"

Newline (ASCII LF or linefeed)\n

Backspace (in ASCII, the BS character)\b

Formfeed (ASCII FF)\f

Carriage return (ASCII CR)\r

Horizontal tab (ASCII HT)\t

Vertical tab (ASCII VT)\v

The character with octal code ooo, e.g., '\177'.\ooo

The character with hexadecimal value hh, e.g., "\xFF".\xhh

New Mexico Tech Computer CenterPython 2.2 quick reference6

http://www.unicode.org/

The Unicode character with hexadecimal value hhhh, e.g., u"\uFFFF".\uhhhh

Raw strings: If you need to use a lot of backslashes inside a string constant, and doubling them is too
confusing, you can prefix any string with the letter r to suppress the interpretation of the escape sequences
above. For example, '\\\\' contains two backslashes, but r'\\\\' contains four. Raw strings are
particularly useful with the regular expression module (p. 37).

7.2.2. The string format operator

In addition to the operations common to all sequences, strings support the operator
f % v

Format values from a tuple v using a format string f; the result is a single string with all the values
formatted. See the table of format codes below.

All format codes start with %; the other characters of f appear unchanged in the result. A conversational
example:

>>> print "We have %d pallets of %s today." % (49, "kiwis")
We have 49 pallets of kiwis today.

In general, format codes have the form
%[p][m[.n]]c

where:

is an optional prefix; see the table of format code prefixes below.p

specifies the total desired field width. The result will never be shorter than this value, but may
be longer if the value doesn't fit; so, "%5d" % 1234 yields " 1234", but "%2d" % 1234
yields "1234".

m

specifies the number of digits after the decimal point for float types.n

indicates the type of formatting.c

Here are the format codes c:

String; e.g., "%-3s" % "xy" yields "xy " (because the "-" prefix forces left alignment).%s

Decimal conversion, e.g., "%3d" % -4 yields the string " -4".%d

Exponential format; allow four characters for the exponent. Examples: "%08.1e" % 1.9783
yields "0002.0e+00".

%e

Same as %e, but an uppercase E is used for the exponent.%E

For float type. E.g., "%4.1f" % 1.9783 yields " 2.0".%f

General numeric format. Use %f if it fits, otherwise use %e.%g

Same as %G, but an uppercase E is used for the exponent if there is one.%G

Octal, e.g., "%o" % 13 yields "15".%o

Hexadecimal, e.g., "%x" % 247 yields "f7".%x

Same as %x, but capital letters are used for the digits A-F, e.g., "%04X" % 247 yields "00F7".%X

Convert an integer to the corresponding ASCII code; for example, "%c" % 0x61 yields the
string "a".

%c

Places a percent sign (%) in the result. Does not require a corresponding value.%%

7Python 2.2 quick referenceNew Mexico Tech Computer Center

Format prefixes include:

For numeric types, forces the sign to appear even for positive values.+

Left-justifies the value in the field.-

For numeric types, use zero fill. For example, "%04d" % 2 produces the value "0002".0

With the %o (octal) format, append a leading "0"; with the %x (hexadecimal) format, append
a leading "0x"; with the %g (general numeric) format, append all trailing zeroes. Examples:

>>> "%4o" % 127

#

' 177'
>>> "%#4o" % 127
'0177'
>>> "%x" % 127
'7f'
>>> "%#x" % 127
'0x7f'
>>> "%10.5g" % 0.5
' 0.5'
>>> "%#10.5g" % 0.5
' 0.50000'

7.2.3. String formatting from a dictionary

You can use the string format operator % to format a set of values from a dictionary D:
f % D

In this form, the general form for a format code is:
%(k)[p][m[.n]]c

where k is a key in dictionary D, and the rest of the format code is as in the usual string format operator.
For each format code, the value of D[k] is used.

For example, suppose D is the dictionary {'baz':39, 'foo':'X'}; then ("=%(foo)s=%(baz)03d="
% D) yields '=X=039='.

7.2.4. String functions

Functions:

str(obj)
Converts obj, an object of any type, to a string. For example, str(17) produces the string '17'.

unicode(s[,enc[,errs]])
Converts an object s, of any type, to a Unicode string. The optional enc argument specifies an en-
coding, and the optional errs argument specifies what to do in case of errors (see the Python Library
Reference [http://www.python.org/doc/current/lib/lib.html] for details).

raw_input(p)
Prompt for input with string p, then return a line entered by the user, without the newline. p may
be omitted for unprompted input.

7.2.5. String methods

These methods are available on any string or Unicode object S:

New Mexico Tech Computer CenterPython 2.2 quick reference8

http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/lib/lib.html

S.capitalize()
Return S with its first character capitalized.

S.center(w)
Return S centered in a string of width w, padded with spaces. If w<=len(S), the result is a copy of
S. Example: 'x'.center(4) returns ' x '.

S.count(t[,start[,end]])
Return the number of times string t occurs in S. To search only a slice S[start:end] of S, supply
start and end arguments.

S.endswith(t[,start[,end]])
Predicate to test whether S ends with string t. If you supply the optional start and end arguments,
it tests whether the slice S[start:end] ends with t.

S.expandtabs([tabsize])
Returns a copy of S with all tabs expanded to spaces using. The optional tabsize argument specifies
the number of spaces between tab stops; the default is 8.

S.find(t[,start[,end]])
If string t is not found in S, return -1; otherwise return the index of the first position in S that matches
t. For example, "banana".find("an") returns 1. The optional start and end arguments restrict
the search to slice S[start:end].

S.index(t[,start[,end]])
Works like .find(), but if t is not found, it raises a ValueError exception.

S.isalnum()
Predicate that tests whether S is nonempty and all its characters are alphanumeric.

S.isalpha()
Predicate that tests whether S is nonempty and all its characters are letters.

S.isdigit()
Predicate that tests whether S is nonempty and all its characters are digits.

S.islower()
Predicate that tests whether S is nonempty and all its characters are lowercase letters.

S.isspace()
Predicate that tests whether S is nonempty and all its characters are whitespace characters.

In Python, the characters considered whitespace include ' ' (space, called SP in ASCII), '\n'
(newline, NL), '\r' (return, CR), '\t' (tab, HT), '\f' (form feed, FF), and '\v' (vertical tab,
VT).

S.isupper()
Predicate that tests whether S is nonempty and all its characters are uppercase letters.

S.join(L)
L must be a sequence. Returns a string containing the members of the sequence with copies of string
S inserted between them. For example, '/'.join(['foo', 'bar', 'baz']) returns the string
'foo/bar/baz'.

S.ljust(w)
Return a copy of S left-justified in a field of width w, padded with spaces. If w<=len(S), the result
is a copy of S. Example: "Ni".ljust(4) returns "Ni ".

9Python 2.2 quick referenceNew Mexico Tech Computer Center

S.lower()
Returns a copy of S with all uppercase letters replaced by their lowercase equivalent.

S.lstrip([c])
Return S with all leading characters from string c removed. The default value for c is a string con-
taining all the whitespace characters.

S.replace(old,new[,max])
Return a copy of S with all occurrences of string old replaced by string new. Normally, all occur-
rences are replaced; if you want to limit the number of replacements, pass that limit as the max ar-
gument.

S.rfind(t[,start[,end]])
Like .find(), but if t occurs in S, this method returns the highest starting index.

For example, "banana".rfind("an") returns 3.

S.rjust(w)
Return a copy of S right-justified in a field of width w, padded with spaces. If w<=len(S), the result
is a copy of S.

S.rstrip([c])
Return S with all trailing characters from string c removed. The default value for c is a string con-
taining all the whitespace characters.

S.split([d[,max]])
Returns a list of strings [s0, s1, ...] made by splitting S into pieces wherever the delimiter
string d is found. The default is to split up S into pieces wherever clumps of one or more whitespace
characters are found. Some examples:

>>> "I'd annex \t \r the Sudetenland" .split()
["I'd", 'annex', 'the', 'Sudetenland']
>>> '3/crunchy frog/ Bath & Wells'.split('/')
['3', 'crunchy frog', ' Bath & Wells']
>>> '//Norwegian Blue/'.split('/')
['', '', 'Norwegian Blue', '']
>>> 'never<*>pay<*>plan<*>'.split('<*>')
['never', 'pay', 'plan', '']

The optional max argument limits the number of pieces removed from the front of S. For example,
'a/b/c/d/e'.split('/',2) yields the list ['a', 'b', 'c/d/e'].

S.splitlines([keepends])
Splits S into lines and returns a list of the lines as strings. Discards the line separators unless the
optional keepends arguments is true.

S.startswith(t[,start[,end]])

Predicate to test whether S starts with string t. Otherwise similar to .endswith().

S.strip([c])
Return S with all leading and trailing characters from string c removed. The default value for c is
a string containing all the whitespace characters.

S.swapcase()
Return a copy of S with each lowercase character replaced by its uppercase equivalent, and vice
versa.

New Mexico Tech Computer CenterPython 2.2 quick reference10

S.translate(new[,drop])
This function is used to translate or remove each character of S. The new argument is a string of
exactly 256 characters, and each character x of the result is replaced by new[ord(x)]. If you would
like certain characters removed from S before the translation, provide a string of those characters
as the drop argument.

S.upper()
Return a copy of S with all lowercase characters replaced by their uppercase equivalents.

S.zfill(w)
Return a copy of S left-filled with '0' characters to width w. For example, '12'.zfill(5) returns
'00012'.

7.3. The list type
Python's list type represents a sequence of objects of any type. Lists support all the operations described
above under intrinsics for sequences (p. 5), in addition to the operations described below.

7.3.1. Constructing a list

To create a list, place zero or more objects between a pair of square brackets, separated by commas.
Examples:

[] # An empty list.
["baked beans"] # List containing one item.
[23, 30.9, "x"] # List containing three items.

7.3.2. List comprehensions

In versions 2.2 and beyond, you can also use a list comprehension to create a list. The general form is:
[e for v1 in s1

for v2 in s2 ...
...
if c]

where e is some expression, followed by zero or more for clauses, optionally followed by an if clause.
The equivalent in pre-2.2 Python would be:

temp = []
for v1 in s1:

for v2 in s2 ...:
...

if c:
temp.append (e)

The value of the expression is the final value of temp.

A few examples of list comprehensions, taken from actual evaluations in Python calculator mode:
>>> [(n,a) for n in range(3) for a in ('a', 'b')]
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]
>>> [(i,j) for i in range(1,4) for j in range(1,4) if i != j]
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
>>> [10*x+y for x in range(1,4) for y in range(x)]
[10, 20, 21, 30, 31, 32]

11Python 2.2 quick referenceNew Mexico Tech Computer Center

7.3.3. Slice assigment

Because lists are mutable, lists with slice operators can appear as destinations in an assign statement.
The expression being assigned must be a sequence, and the elements of that slice of the list are replaced
by the elements of that sequence. For example:

>>> L=[0,1,2,3,4,5,6,7,8]
>>> L[4:6]
[4, 5]
>>> L[4:6] = [17, 18, 19, 20]
>>> L
[0, 1, 2, 3, 17, 18, 19, 20, 6, 7, 8]
>>>

7.3.4. List functions

list(i)
Creates a list, a sequence of values that is mutable (its contained values can be changed, added, or
deleted). The value i is a sequence of values or any object that can be iterated over.

range([start,]limit[,step])
Creates a list containing a sequence of integers. There are three forms:

• range(limit) creates the list [0, 1, .., limit-1]. Note that the list stops just before
element limit. For example, range(3) returns the list [0, 1, 2].

• range(start,limit) creates the list [start, start+1, ..., limit-1].

• range(start,limit,step) returns the list [start,start+step,start+2*step,...],
stopping just before the element that would equal or exceed limit in the direction of the step.

For example, range(4,10,2) returns [4, 6, 8], and range(3,-1,-1) returns [3, 2,
1, 0].

xrange([start,]limit[,step])
Effectively produces the same values as the range() function, but doesn't take up all the space,
which is nice for iterating over huge sequences.

7.3.5. List methods

All list objects have these methods, where L is any list:

L.append(x)
Append a new element x to the end of list L. Does not return a value.

L.pop([i])
Remove and return element i from L. The default of i is zero.

L.count(x)
Return the number of elements of L that compare equal to x.

L.index(x)
If L contains any elements that equal x, return the index of the first such element, otherwise raise
a ValueError exception.

L.insert(i,x)
Insert a new element x into list L just before the ith element, shifting all higher-number elements
to the right. No value is returned. Example: if L is [0,1,2], then L.insert(1,99) changes L to
[0,99,1,2].

New Mexico Tech Computer CenterPython 2.2 quick reference12

L.remove(x)
Remove the first element of L that is equal to x. If there aren't any such elements, raises ValueError.

L.reverse()
Reverses the elements of L in place; does not return a result.

L.sort()
Sort list L in place using the default rules for comparing objects. Does not return a result.

L.sort(f)
Sort list L in place using function f to compare pairs of objects to see in which order they should go.
The calling sequence and result of this function should be the same as for the cmp() function.

For example, here is a function that can be used to sort numbers and strings in descending order,
demonstrated in calculator mode:

>>> def descendingCmp(a,b):
... return - cmp(a,b)
...
>>> L=[0,39,18,99,40]
>>> L.sort()
>>> L
[0, 18, 39, 40, 99]
>>> L.sort(descendingCmp)
>>> L
[99, 40, 39, 18, 0]
>>>

7.4. The tuple type
A tuple, like a list, represents a sequence of zero or more objects of any type. Unlike mutable lists,
though, tuples cannot be modified in place; that is, they are immutable.

To create a tuple, place zero or more values between parentheses with commas between them. If there
is only one value, place a comma after it. The examples shown below are tuples containing four, one,
and zero values respectively:

("red", 255, 0, 0)
(10,)
()

All the operations described in intrinsics for sequences apply to tuples.

When to use tuples:

• Whenever you want to form a sequence whose contents will not change.

• Tuples are required by Python in some places, such as when using the string format operator.

• Creating a tuple is faster and uses less memory than creating a list of the same size.

8. The dictionary type
Python dictionaries are one of its more powerful built-in types. They are generally used for look-up
tables and many similar applications.

A Python dictionary represents a set of zero or more ordered pairs (ki, vi) such that:

• Each ki value is called a key;

• each key is unique and immutable; and

13Python 2.2 quick referenceNew Mexico Tech Computer Center

• the associated value vi can be of any type.

Another term for this structure is mapping, since it maps the set of keys onto the set of values.

8.1. Operations on dictionaries
These operations are available on any dictionary object D:

Returns the number of entries in D.len(D)

If D has an entry with key k, returns the corresponding value. If there
is no such key, raises a KeyError exception.

D[k]

Sets the entry for key k to value v. If there was previously a value
for that key, it is replaced.

D[k] = v

If there is an entry for key k, that entry is deleted. If not, a KeyError
exception is raised.

del D[k]

Predicate that returns true if D has a key k.D.has_key(k)

A list of (key,value) tuples from D.D.items()

A list of all keys in D..keys()

A list of all values in D, in the same order as D.keys().D.values()

Merge dictionary E into D. If the same key exists in both, use the
value from E.

D.update(E)

Same as D[k], but if no entry exists for key k, returns x, or None if
x is omitted.

D.get(k,x)

If D[k] exists, returns that value. If there is no element D[k], sets
D[k] to x, defaulting to None, and returns that value.

D.setdefault(k[,x])

Returns an iterator over the (key, value) pairs of D.D.iteritems()

Returns an iterator over the keys of D.D.iterkeys()

Returns an iterator over the values of D.D.itervalues()

Returns an arbitrary entry from D as a (key, value) tuple, and
also removes that entry. If D is empty, raises a KeyError exception.

D.popitem()

True if x is a key in D.x in D

True if x is not a key in D.x not in D

9. Input and output: File objects
To open a file:

f = open(name[,mode[,bufsize]]])

This function returns a file object. The name is the file's pathname. The bufsize argument, if given, is
used to specify the buffer size (but this is not usually necessary). The mode argument is a string with
this syntax:

"access[+][b]"

where access is r for read access (the default), w for write access, and a for append. The + flag specifies
update access, and b forces binary mode.

Methods defined on file objects include:

New Mexico Tech Computer CenterPython 2.2 quick reference14

f.read()
Read the entire file f and return it as a string.

f.read(n)
Read the next n characters from file f. If the file is exhausted, it returns an empty string (""); if
fewer than n characters remain, you get all of them.

f.readline()
Returns the next line from f, including its line terminator, if any. Returns an empty string when
the file is exhausted.

f.readlines()
Read all the lines from file f and return them as a list of strings, including line termination characters.

f.write(s)
Write string s to file f.

f.writelines(L)
Write a list of strings L to file f.

f.seek(p[,w])
Change the file position. The value of w determines how p is used:

• 0: Set the position to p; this is the default.

• 1: Move the position forward p bytes from its current position.

• 2: Set the position to p bytes before the end of file.

f.truncate([p])
Remove any contents of the file past position p, which defaults to the current position.

f.tell()
Returns the current file position.

f.flush()
Flush the buffer, completing all transactions against f.

f.isatty()
Predicate: Is this file a terminal?

f.close()
Close file f.

10. Expressions
Python's operators are shown here from highest precedence to lowest, with a ruled line separating
groups of operators with equal precedence:

15Python 2.2 quick referenceNew Mexico Tech Computer Center

Table 2. Python 2.2 operator precedences

Parenthesized expression or tuple.(E)

List.[E, ...]

Dictionary.{key:value, ...}

Convert to string representation.`...`

Attribute reference.x.attribute

Subscript or slice; see above under sequence types.x[...]

Call function f.f(...)

x to the y power.x**y

Negation.-x

Bitwise not (one's complement).~x

Multiplication.x*y

Division.x/y

Modulo (remainder of x/y).x%y

Addition, concatenation.x+y

Subtraction.x-y

x shifted left ybits.x<<y

x shifted right ybits.x>>y

Bitwise and.x&y

Bitwise exclusive or.x^y

Bitwise or.x|y

Comparisons. These operators are all predicates (see below).
x<y, x<=y, x>y, x>=y, x!=y,
x==y

Test for membership.x in y, x not in y

Test for identity.x is y, x is not y

Boolean “not.”not x

Boolean “and.”x and y

Boolean “or.”x or y

10.1. What is a predicate?
We use the term predicate to mean any Python function that tests some condition and returns a true or
false value. For example, x < y is a predicate that tests whether x is less than y. Predicates generally
return 1 for true and 0 for false. For example, 5 < 500 returns 1, while 5 >= 500 returns 0.

11. Built-in functions for multiple types
Here are some useful functions that operate on objects of many types:

chr(n)
Returns a string containing the character whose ASCII code is the integer n.

New Mexico Tech Computer CenterPython 2.2 quick reference16

cmp(x,y)
Compare two objects. The value returned is zero if x and y are equal; negative if x precedes y; and
positive if x follows y.

This may not work for all types, or when x and y have different types. It will certainly work for
numbers and strings.

dir(x)
Returns a list of all the names defined in x. If x is a module, the list shows the names of its members
and functions. If the argument is omitted, it returns a list of the names defined in the local name
space.

filter(f,S)
S must be a sequence, and f a function that takes one argument and returns true or false (that is, a
predicate). The result is a new sequence consisting of only those elements of S for which f(S) is
true. If f is None, the result is a sequence consisting of the true elements of S; see the definition of
true-false values below.

globals()
Returns a dictionary whose keys are the names defined in the current module's global scope, and
whose values are the values bound to those names.

locals()
Returns a dictionary whose keys are the names defined in the current local scope, and whose values
are the values bound to those names.

map(f,s0[,s1,...])
Applies a function f to each member of a sequence s0 and returns a list of the results [f(s0[0]),
f(s0[1]), ...]. If there are additional sequence arguments, the function must take as many ar-
guments as there are sequences, and the [ith] element of the result is equal to f(s0[i],s1[i],
...).

ord(c)
The argument c must be a string containing exactly one character. The return value is the character
code of that character as an integer.

reduce(f,s[,i])
Apply the two-argument function f pairwise to the elements of sequence s. Starts by computing
t0=f(s[0],s[1]), then t1=f(t0,s[1]), and so forth over the elements of s, then returns the
last ti.

The optional third argument i is a starting value. If it is given, the function starts by computing
t0=f(i,s[0]), and then continues as before.

repr(x)
Return a string containing a printable representation of x. You can abbreviate this function as `x`.

type(x)
Returns the type of x, or more precisely, the type object for the type of x.

There is one type object for each built-in type; the type objects are named int, long, and so forth,
and are summarized in the table of basic types.

You can compare type objects using expressions like “if type(x) is list...”.

unichr(n)
Returns a Unicode string containing the character whose code is the integer n.

17Python 2.2 quick referenceNew Mexico Tech Computer Center

12. Simple statements
Simple (non-branching) statement types are summarized below.

12.1. Assignment
Assignment is a statement, not an operator, in Python. The general form is:

L0=L1=...=E

This statement first evaluates some expression E, and then assigns that value to one or more destinations
L0, L1, and so on. Each destination can be either of:

• A variable name. The variable is bound to the value of the expression, that is, that variable now has
that value, and any previous value it may have had is forgotten. For example, the statement

beanCount=m=0

sets variables beanCount and m to the integer value 0.

• Part of a mutable object that contains multiple values. For example, if L is a list, the statement
L[0]='xyz'

would set the first element of L to the string 'xyz'.

As another example, suppose D is a dictionary. The statement
D["color"]="red"

would associate key "color" with value "red" in that dictionary.

You can also assign to slices of a list:
L[1:3] = [10, 20, 30]

This statement would delete elements 1 and 2 of list L and replace them with three new elements
10, 20, and 30.

Finally, if an object X has an attribute X.klarn, you can assign a value of 73 to it using:
X.klarn = 73

• If the expression E is a sequence, the destination can be a list of variables, and the sequence is unpacked
into the variables in order. For example, this statement

x, y, z = [10, 11, 12]

sets x to 10, y to 11, and z to 12.

12.2. The assert statement
To check for “shouldn't happen” errors, you can use an assert statement:

assert e1
assert e1, e2

where e1 is some condition that should be true. If the condition fails, an AssertionError exception
is raised (see exceptions below). If a second expression e2 is provided, the value of that expression is
passed with the exception.

Assertion checking can be disabled by running Python with the -O (optimize) option.

12.3. The del statement
The purpose of the del statement is to delete things. The general form is:

del L0, L1, ...

New Mexico Tech Computer CenterPython 2.2 quick reference18

where each Li is a destination (described above under the assignment statement). You can delete:

• A variable. For example, the statement
del i, j

causes variables i and j to become unbound, that is, undefined.

• An element or slice of a list. For example,
del L[5], M[-2:]

would delete the sixth element of list L and the last two elements of list M.

• One entry in a dictionary. For example, if D is a dictionary,
del D["color"]

would delete from D the entry for key "color".

12.4. The exec statement
To dynamically execute Python code, use this statement:

exec E0 [in E1 [, E2]]

Expression E0 specifies what to execute, and may be a string containing Python source code, an open
file, or a code object. If E1 is omitted, the code is executed in the local scope. If E1 is given but E2 is not,
E1 is a dictionary used to define the names in the global and local scopes. If E2 is given, E1 is a dictionary
defining the global scope, and E2 is a dictionary defining the local scope.

12.5. The from statement
The purpose of the from statement is to use things (variables, functions, and so on) from modules. There
are two general forms:

from M import *
from M import n0, n1, ...

where M is the name of a Python module. In the first form, all objects from that module are added to
the local name space. In the second form, only the named objects n0, n1, ... are added.

There are two types of modules:

• Python has a number of built-in modules; see commonly used modules (p. 33) below.

• You can also create your own modules by simply placing the definitions of variables and functions
in a file whose name has the form f.py, and then using a statement like this:

from f import *

Compare this statement with the import statement below.

12.6. The global statement
To declare that you want to access global variables, use a statement of the form

global v0, v1, ...

This is not actually necessary unless you are assigning a value to the variable before using it, which
normally leads Python to conclude that the variable is local.

12.7. The import statement
Like the from statement above, the import statement gives your program access to objects from external
modules. The general form is:

19Python 2.2 quick referenceNew Mexico Tech Computer Center

import M0, M1, ...

where each Mi is the name of a module.

However, unlike the from statement, the import statement does not add the objects to your local name
space. Instead, it adds the name of the module to your local name space, and you can refer to items in
that module using the syntax M.name where M is the name of the module and name is the name of the
object.

For example, there is a standard module named math that contains a variable named pi and a function
named sqrt(). If you import it using

import math

then you can refer to the variable as math.pi and the function as math.sqrt().

If instead you did this:
from math import *

then you could refer to them simply as pi and sqrt().

12.8. The pass statement
This statement does nothing. It is used as a placeholder where a statement is expected. Its syntax:

pass

12.9. The print statement
To print the values of one or more expressions e0, e1, ..., use a statement of this form:

print e0, e1, ...

The values are converted to strings if necessary and then printed with one space between values.

Normally, a newline is printed after the last value. However, you can suppress this behavior by appending
a comma to the end of the list. For example, this statement

print "State your name:",

would print the string followed by one space and leave the cursor at the end of that line.

13. Compound statements
For branching statements, B is a block of all the statements that are indented further, up to but not in-
cluding the next statement that is not indented further; blank lines don't count.

You can put the block B on the same line as the branching statement, after the colon (:). Multiple
statements can be so placed, with semicolons (;) separating them.

13.1. Boolean values: true and false
In the sections below on the “if” and “while” statements, we speak of values being true or false. For
Python's purposes, the following values are considered false:

• Any number equal to zero (0, 0.0, 0L, 0j).

• Any empty sequence (such as the empty list “[]” or the empty tuple “()”).

• An empty mapping, such as the empty dictionary “{}”.

• The special value None.

Any other value is considered true.

New Mexico Tech Computer CenterPython 2.2 quick reference20

13.2. The if construct: choice
For conditional branching:

if E0:
B0

elif E1:
B1

elif ...
else:

Bf

This is the most general form, and means: if expression E0 is true, execute block B0; otherwise, if E1 is
true, execute block B1; and so forth. If all the conditions are false, execute Bf.

The elif clause is optional, and there can be any number of them. The else clause is also optional.

When evaluating whether an expression is true or false, false values include None, a number equal to
zero, an empty sequence, or an empty dictionary. All other values are true.

Here's an example:
if x < 0:

print "But it's negative!"
else:

print "The square root of", x, "is", x**0.5

13.3. The for construct: iteration
To iterate over a section of the program:

for L in E:
B

This statement executes a block of code once for each member of a sequence E. For each member, the
destination L is set to that member, and then the block B is executed.

The destination L follows the same rules for destinations as in the assignment statement.

13.4. The while construct: looping
To execute a section of the program repeatedly:

while E:
Bt

else:
Bf

The else: part is optional. Here's how the statement is executed:

1. Evaluate the expression E. If that expression is false, go to Step 3 (p. 21). Otherwise go to Step
2 (p. 21).

2. Execute block Bt, and then return to Step 1 (p. 21).

3. If there is an else: block Bf, execute it, otherwise do nothing.

13.5. The break statement
To exit a for or while loop, use this statement:

break

21Python 2.2 quick referenceNew Mexico Tech Computer Center

13.6. The continue statement
Within a for or while statement, you can jump back to the top of the loop and start the next iteration
with this statement:

continue

13.7. The try construct: catching exceptions
Python has a wonderfully flexible and general error-handling mechanism using exceptions. Whenever
a program cannot proceed normally due to some problem, it can raise an exception. For example, there
is a built-in exception called ZeroDivisionError that occurs whenever someone tries to divide by
zero. You can also define your own kinds of exceptions. See exceptions (p. 23) below for more information
about exception types.

Typically, an exception will terminate execution of the program. However, you can use Python's try
construct to handle exceptions, that is, take some other action when they occur.

The most general form of the construct looks like this:
try:

Bt
except E1, L1:

B1
except E2, L2:

B2
...

else:
Bf

This construct specifies how you want to handle one or more exceptions that may occur during the ex-
ecution of block Bt. Each except clause specifies one kind of exception you want to handle; the Ei part
specifies which exception or exceptions, and the Li parts are destinations that receive data about the
exception when it occurs.

• You can omit the Li part.

• You can omit both the Li and the Ei parts. In that case, the except clause matches all types of ex-
ceptions.

Here is how a try block works:

1. If no exception is raised during the execution of block Bt, the else block Bf is executed if there is
one.

2. If an exception is raised during block Bt, and it matches some exception type Ei, the corresponding
block Bi is executed.

3. If Bt raises an exception that doesn't match any of the except clauses, program execution is ter-
minated and a message shows the exception and a traceback of the program.

The built-in exceptions are arranged in a hierarchy structure of base classes and classes derived from
them. An exception X matches an except: clause Ei if they are the same exception, or if X is a subclass
of Ei. See the discussion of the class structure of exceptions below.

There is another form of try block that is used to force execution of a cleanup block Bc no matter
whether or not another block Bt causes an exception:

try:
Bt

New Mexico Tech Computer CenterPython 2.2 quick reference22

finally:
Bc

If Bt raises any exception, block Bc is executed, then the same exception is raised again.

13.8. The raise statement: throwing exceptions
To raise an exception:

raise e, p

where e is the exception to be raised and p is a value to be passed back to any try block that may handle
this exception. You may omit p, in which case a value of None is returned.

14. Exceptions
Python's exception mechanism allows you to signal errors in a flexible, general way, and also to handle
errors. See the try and raise statements above.

A variety of exceptions are built into Python, and they are arranged in a hierarchy so that you can handle
either specific individual exceptions or larger groupings of them.

Here is the current exception hierarchy. Indentation shows the inheritance: for example, all exceptions
inherit from Exception; ArithmeticError inherits from StandardError; and so on.

• Exception: Base class for all exceptions.

• SystemExit: Normal program termination. This exception is not considered an error.

• StopIteration: This is a special exception to be used with iterators and generators; see iterat-
ors (p. 29) below.

• StandardError: Base class for all exceptions that are considered errors.

• ArithmeticError: Errors from numeric operations.

• FloatingPointError: Failure in a floating point operation.

• OverflowError: A numeric operation that led to a number too large to be represented.

• ZeroDivisionError: Attempt to divide by zero.

• LookupError: Base class for erroneous in retrieving items from a sequence or mapping.

• IndexError: Trying to retrieve an element of a sequence when the index is out of range.

• KeyError: Trying to retrieve an item from a mapping that does not contain the given
key.

• EnvironmentError: Base class for external errors. For the exceptions in this class, the asso-
ciated value is an object with the error number in its .errno attribute and the error message
in its .strerror attribute.

• IOError: Input/output error.

• OSError: Operating system error.

• AssertionError: An assert statement has failed.

• AttributeError: Attempt to retrieve or set a nonexistent attribute of an object.

23Python 2.2 quick referenceNew Mexico Tech Computer Center

• ImportError: Attempt to import a nonexistent module, or a nonexistent name from a
module.

• KeyboardInterrupt: Someone pressed interrupt (e.g., control-C under Unix.

• MemoryError: No more memory is available.

• NameError: Reference to an undefined name.

• NotImplementedError: Use this exception for functions that aren't written yet. It's also
recommended for virtual methods in base classes, those intended to be overridden.

• SyntaxError: Attempt to import or execute syntactically invalid Python source code.

• SystemError: An internal error in Python.

• TypeError: Attempt to use an operation that isn't defined for objects of the type it's to operate
on.

• ValueError: Attempt to operate on an inappropriate value.

15. Defining and calling functions
To define a function named n:

def n(p0[=e0][,p1[=e1]]...[,*pv][,**pd]):
B

Function n is defined as block B. A function can have any number of parameters p1, p2,

If there is an expression ei for parameter pi, that expression specifies the default value for that parameter
used if the caller does not supply a value. Such parameters are called keyword parameters, and all keyword
parameters must follow all positional (non-keyword) parameters.

If there is a *pv parameter, that parameter gets a (possibly empty) list of all extra positional arguments
passed to the function.

If there is a **pd parameter, that parameter gets a dictionary of all extra keyword arguments passed to
the function.

To sum up, a function's parameters must start with zero or more positional parameters, followed by
zero or more keyword parameters, followed optionally by a parameter to receive extra positional argu-
ments, followed optionally by a parameter to receive extra keyword arguments.

15.1. Calling a function
The arguments you supply to a function must satisfy these rules:

• You must supply all positional arguments.

• If you supply additional arguments beyond the positional arguments and the function has keyword
arguments, the additional arguments are matched to those keyword parameters by position. Any
unmatched keywoard parameters assume their default values.

• You can supply arguments for keyword parameters in any order by using the form k=v, where k is
the keyword used in the declaration of that parameter and v is your desired argument.

• If the function is declared with a **pd parameter, you can supply keyword arguments that don't
match the keywords of the parameters. Those extras will be packaged as a dictionary with the
keywords as the keys and their values as the values.

New Mexico Tech Computer CenterPython 2.2 quick reference24

For example, suppose a function is defined with this parameter list:
def foo(a, b, c=9, d="blue", *e, **f): ...

This function has two positional parameters a and b and two keyword parameters c and d. Callers
must supply at least two positional arguments. If a third or fourth positional argument is supplied, they
are bound to parameters c and d respectively; additional positional arguments are bound in a list to e.

If the caller supplies keyword arguments of the form c=value or d=value, those values are bound to
parameters c and d respectively. Any other keyword arguments are packaged as a dictionary and bound
to parameter f.

16. Create your own types: The class construct
You can define new types, or classes, with Python's class declaration. Some definitions:

class
A type (built-in or user-defined).

object
One value of a given type. As the number 23 is an object of type int, so an object in general is one
instance of a user-defined type. It is useful to think of a class a cookie cutter (that is, a pattern), and
an object as a cookie that follows that pattern. Like individual cookies, individual objects all start
out looking the same, but inside them are values that may change.

The type or class defines the behaviors common to all objects of the same type. For example, the
unary - operator works on all values of type float, and changes the sign of the value.

instance
Same as “object.”

member
One of the values inside an instance. For example, a complex number C has two float values inside
it: the real pattern is referred to as C.real and the imaginary part as C.imag. Ultimately all the
values inside an instance are the atomic types listed in the table of basic types, or other objects that
themselves contain atomic types, and so on.

method
A function that operates primarily on an object. Unlike regular Python functions, which are called
with the function name (such as “sqrt(x)”), to call a method you use the syntax:

O.m(...)

where O is an object, m is the method name, and you supply zero or more arguments between par-
entheses.

To define a new class of objects:
class C:

Bi
def n0 (self, ...):

B0
def n1 (self, ...):

B1
...

This construct defines a new class C.

• Block Bi is executed once when the class is first scanned, and can be used to define class variables
and methods.

25Python 2.2 quick referenceNew Mexico Tech Computer Center

• The functions ni define the methods of the class. Note that these def statements must be indented
below the class declaration.

• When you are defining methods, you must always include self as the first argument. When you
call a method, you omit that first argument. For example, if a method is defined as:

class Antenna:
def rotate(self, degrees):
...

then, if you had an instance of this class named hill, you might call the method as
hill.rotate(40.3)

Inside a method, the name self is used to refer to the class's members. For example, inside the
.rotate() method, you might refer to member height as self.height.

To define a derived class that inherits from superclasses P0, P1, ...:
class C(P0,P1,...):

You can inherit from built-in classes such as int and dict. See below under the class constructor (p. 26)
for more details.

You can use a number of special method names to define certain behaviors of your objects. All these
names start and end with two underbars (__). The most commonly used one is __init__(), the class
constructor, but there are many more to define how your objects act when operated on by various op-
erators.

16.1. __init__(): The class constructor
The constructor is a method that is executed to create a new object of the class. Its name is always
__init__().

Its parameter list must always include self as the first argument; any remaining parameters must be
provided by the caller. For example, if your constructor has four parameters including self, a caller
must provide three arguments.

You can think of self as representing the name space inside the instance. To add new members to an
instance, just assign a value to self.v where v is the member name.

Here's a complete example of a class FeetInches that represents dimensions in feet and inches. Intern-
ally the dimension is represented as only inches, and that value is stored in a member named .__inches
(member names starting with two underbars, like this, one, are private members, and hence accessible
only from inside the object).

The constructor takes two arguments named feet and inches and converts them to the private
member .__inches. Then we define a method called .show() that converts the internal dimension
to a string of the form f ft i in where f is the whole feet and i is the inches part. Here's the class
definition:

class FeetInches:
def __init__ (self, feet, inches):

self.__inches = (feet * 12.0) + inches

def show(self):
feet = int (self.__inches / 12.0)
inches = self.__inches - feet * 12.0
return "%d ft %.2f in" % (feet, inches)

To create an object of this type we might say:
fiveFootFour = FeetInches(5, 4)

New Mexico Tech Computer CenterPython 2.2 quick reference26

The method call fiveFootFour.show() would then yield the string "5 ft 4.00 in".

16.2. Special method names
Below are most of the commonly used special methods you can define in your class. Refer to the Python
Reference Manual for a complete list.

.__abs__(self)
Defines the behavior of the abs() function when applied to an object of your class.

.__add__(self,other)
Defines the behavior of this class for self+other.

.__and__(self,other)
Defines the behavior of self&other.

.__cmp__(self,other)
Compares two values, self and other, to see which way they should be ordered. Return a negative
integer if self should come first; return a positive integer if the other value should come first;
and return an integer 0 if they are considered equal.

.__complex__(self)
Defines the behavior of the builtin function complex(), to convert self to a complex value.

.__contains__(self,x)
You can use this special method to define how the “in” and “not in” operators work to test
whether an object x is a member of self. The method returns true if x is in self, false otherwise.

.__del__(self)
Destructor: this method is called when the instance is about to be destroyed because there are no
more references to it.

.__delitem__(self,key)
Called to delete self[key]. Raise IndexError if the key is not valid.

.__div__(self,other)
Defines the behavior of self/other.

.__divmod__(self,other)
Defines the behavior of divmod(self,other).

.__float__(self)
Defines the behavior of the builtin float() function; should return a float value.

.__getattr__(self,name)
Get self's attribute whose name is the string name. If the name is not a legal attribute name, this
method should raise AttributeError. This method is called only if the object doesn't have a
regular attribute by the given name.

.__getitem__(self,key)
Called on access to self[key]. Raise IndexError if the key is not valid.

.__int__(self)
Defines the behavior of the builtin int() function; should return a value of type int.

.__invert__(self)
Defines the behavior of the unary ~ operator.

27Python 2.2 quick referenceNew Mexico Tech Computer Center

.__iter__(self)
If self is a container object, return an iterator that iterates over all the items in that object. See
iterators (p. 29) below. For mapping objects, the iterator should iterate over all the keys.

.__hex__(self)
Defines the behavior of the builtin hex() function; should return a string of hexadecimal characters.

.__len__(self)
Return the length of self as a nonnegative integer.

.__long__(self)
Defines the behavior of the builtin long() function.

.__lshift__(self,other)
Defines the behavior of self<<other.

.__mod__(self,other)
Defines the behavior of self%other.

.__mul__(self,other)
Defines the behavior of self*other.

.__neg__(self)
Implements the unary negate operator -self.

.__nonzero__(self)
Called to test an object's truth value. Return 1 for true, 0 for false. If you don't define this method,
Python tries computing the length with the .__len__() method; zero length is considered false
and all other values true.

.__oct__(self)
Defines the behavior of the builtin oct() function; should return a string of octal characters.

.__or__(self,other)
Defines the behavior of self|other.

.__pow__(self,other[,modulo])
Defines the behavior of the exponentiation operator self**other. It also implements the built-in
function pow(), which takes an optional third argument modulo; see that function for details about
the third argument..

.__rshift__(self,other)
Defines the behavior of self>>other.

.__setattr__(self,name,value)
Called for assignments of the form

O.name = value

If your method needs to store a value in the instance, don't just assign a value, because that will
force .__setattr__() to be called again, creating an infinite loop. Instead, use an assignment of
the form

O.__dict__[name] = value

.__setitem__(self,key,value)
Called for assignments to self[key].

.__str__(self)
Returns self in the form of a string. The built-in function str() and the print statement use this
method if it is defined.

New Mexico Tech Computer CenterPython 2.2 quick reference28

.__sub__(self,other)
Defines the behavior of self-other.

.__xor__(self,other)
Defines the behavior of self^other.

16.3. Intrinsics for objects
These functions can apply to classes, instances, and modules.

delattr(O,n)
Delete the attribute whose name is n from object O.

getattr(O,n)
Get the attribute whose name is n from object O.

hasattr(O,n)
Does object O have an attribute named n?

setattr(O,n,v)
Set the attribute of object O named n to value v.

17. Recent features
The Python language is in active development. Sections below describe some major new features since
version 2.0.

17.1. Iterators
New features in Python 2.2 generalize the process of visiting the elements of a sequence.

These features all affect the way for statements work. In the general case, a for statement looks like
this:

for v in S:
B

where the block B is executed once for each element of the sequence S, with some destination v set to
each element of S in turn.

An iterator is a new concept that generalizes the sequence S so that you can use objects other than reg-
ular sequence types like lists and tuples. An iterator is an object that knows how to visit a sequence of
values.

The way for statements actually work now is that it calls the built-function iter(S) to convert the
sequence into an iterator that knows how to visit the elements of S. Calling iter(S) where S is a list
or tuple returns an iterator that visits each element of the list or tuple in turn, with index values 0, 1, 2,
....

Any object with the special .__getitem__() method can be used as the sequence in a for statement.
Values 0, 1, ... are used for the index, and the for statement terminates when .__getitem__() raises
IndexError.

Objects may also have an .__iter__() method, which supersedes the .__getitem__() method in
for statements. This method implements the iter() function for the class, and returns an iterator for
the instance.

29Python 2.2 quick referenceNew Mexico Tech Computer Center

An iterator must be an object with a .next() method that takes no arguments and returns the next
element in sequence. This method should raise the special exception StopIteration to signify that
there are no more elements.

17.2. Generators
Generators are a completely new type of iterator that allows a function to do lazy evaluation of a sequence,
that is, to produce the values of the sequence one by one on demand.

Normally, when a function it is called, it runs until it either provides a value with a return statement,
or falls off the bottom of the function block. But starting in Python 2.2, it is possible for a function to
return a value and also suspend its entire internal state for later resumption. This state includes the
current point of execution inside the function, and all its local variables. Such a function is called a
generator.

A generator G can be used in a for statement:
for v in G():

B

In this context, every time the generator G returns a value, v is set to that value, and the block G is ex-
ecuted.

The beauty of this construct is that function G doesn't have to compute all its values at once. It can do
lazy evaluation, producing new values only as they are needed by the caller.

To write your own generator, you must have this special import statement to enable the feature:
from __future__ import generators

In your function definition, use the yield statement to generate the next value:
yield E

Executing this statement returns the value of expression E, but it also saves the state of the function to
allow later resumption.

Here's an example. This function generates the even numbers from 0 up to the argument you give it:
def evens(n):

i = 0
while 2*i <= n:

yield 2*i
i = i + 1

Here's how that function would work in a for statement:
>>>for v in evens(30):
... print v,
...
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

17.3. Static methods
Sometimes you want to associate a function with a particular class, but it doesn't always have an instance
(self) to operate on. In these cases, you can declare a static method within the class. Such a method is
like any other method, except that you won't include a first argument of self in the argument list. To
make a method static, include a line of this form just after the method's declaration:

f = staticmethod (f)

where f is the name of the method.

To call a static method, use this syntax:
C.f(...)

New Mexico Tech Computer CenterPython 2.2 quick reference30

where C is the class name and f is the method name.

Here's an example. Suppose you have a class called Celsius that represents a temperature, and you
want to be able to convert an object of that class to a 6-character string for display. Normally you would
declare a .__str__() method in the class to do the conversion.

However, suppose you have a variable named outdoor that may contain a Celsius object, but
sometimes the temperature is unknown and outdoor is set to None. You want to write a function that
will convert the temperature if it is known, but render the value as '******' if not. You could write
a standalone function that does that, but it really is associated with the class. So you write a static
function like this:

class Celsius:
...
def show(temp):

if temp is None:
return '******'

else:
return str(temp)

show = staticmethod(show)

Then you could call this method as "Celsius.show(outdoor)".

17.4. Class methods
A similar new feature is the class method. As with static methods, a class method is not passed the instance
as its first (self) argument. However, a class method is always passed a first argument containing the
class object itself. You declare a method as a class method by following its declaration with a line of the
form

f = classmethod (f)

Here's an example:
class SpecialClass:

...
def g(co, z):

...
g = classmethod(g)

If called as SpecialClass.g(4), within method g z would be bound to the integer 4 and g would
be bound to the class object SpecialClass.

18. The Python debugger
The Python debugger allows you to monitor and control execution of a Python program, to examine
the values of variables during execution, and to examine the state of a program after abnormal termin-
ation (post-mortem analysis).

18.1. Starting up pdb
To execute any Python statement under the control of pdb:

>>> import pdb
>>> import yourModule
>>> pdb.run('yourModule.test()') # Or any other statement

where yourModule.py contains the source code you want to debug.

To debug a Python script named myscript.py:
python /usr/local/lib/python2.2/pdb.py myscript.py

31Python 2.2 quick referenceNew Mexico Tech Computer Center

To perform post-mortem analysis:
>>> import pdb
>>> import yourModule
>>> yourModule.test()
[crash traceback appears here]
>>> pdb.pm()
(pdb)

Then you can type debugger commands at the (pdb) prompt.

18.2. Functions exported by pdb
The pdb module exports these functions:

pdb.run(stmt[,globals[,locals]])
Executes any Python statement. You must provide the statement as a string. The debugger prompts
you before beginning execution. You can provide your own global name space by providing a
globals argument; this should be a dictionary mapping global names to values. Similarly, you
can provide a local namespace by passing a dictionary locals.

pdb.runeval(expr[,globals[,locals]])
This is similar to the pdb run command, but it evaluates an expression, rather than a statement.
The expr is any Python expression in string form.

pdb.runcall(func[,arg]...)
Calls a function under pdb control. The func must be either a function or a method. Arguments
after the first argument are passed to your function.

18.3. Commands available in pdb
The debugger prompts with a line like this:

(pdb)

At this prompt, you can type any of the pdb commands discussed below. You can abbreviate any
command by omitting the characters in square brackets. For example, the where command can be ab-
breviated as simply w.

h[elp] [cmd]
Without an argument, prints a list of valid commands. Use the cmd argument to get help on command
cmd.

!stmt
Execute a Python statement stmt. The “!” may be omitted if the statement does not resemble a
pdb command.

w[here]
Shows your current location in the program as a stack traceback, with an arrow (->) pointing to
the current stack frame.

q[uit]
Exit pdb.

l[ist] [begin[,end]]
Shows you Python source code. With no arguments, it shows 11 lines centered around the current
point of execution. The line about to be executed is marked with an arrow (->), and the letter B
appears at the beginning of lines with breakpoints set.

New Mexico Tech Computer CenterPython 2.2 quick reference32

To look at a given range of source lines, use the begin argument to list 11 lines around that line
number, or provide the ending line number as an end argument. For example, the command list
50,65 would list lines 50-65.

(empty line)
If you press Enter at the (pdb) prompt, the previous command is repeated. The list command
is an exception: an empty line entered after a list command shows you the next 11 lines after the
ones previously listed.

b[reak] [[filename:]lineno[,condition]]b[reak] [function[,condition]]
The break command sets a breakpoint at some location in your program. If execution reaches a
breakpoint, execution will be suspended and you will get back to the (pdb) prompt.

The first form sets a breakpoint at a specific line in a source file. Specify the line number within
your source file as lineno; add the filename: if you are working with multiple source files, or
if your source file hasn't been loaded yet.

The second form sets a breakpoint on the first executable statement of the given function.

You can also specify a conditional breakpoint, that is, one that interrupts execution only if a given
condition evaluates as true. For example, the command break 92,i>5 would break at line 92
only when i is greater than 5.

When you set a breakpoint, pdb prints a “breakpoint number.” You will need to know this number
to clear the breakpoint.

tbreak
Same options and behavior as break, but the breakpoint is temporary, that is, it is removed after
the first time it is hit.

cl[ear] [lineno]
If used without an argument, clears all breakpoints. To clear one breakpoint, give its breakpoint
number (see break above).

s[tep]
Single step: execute the current line. If any functions are called in the current line, pdb will break
upon entering the function.

n[ext]
Like step, but does not stop on entering a called function.

c[ont[inue]]
Resume execution until the next breakpoint (if any).

r[eturn]
Resume execution until the current function returns.

a[rgs]
Display the argument names and values to the currently executing function.

p expr
Evaluate an expression expr and print its value.

19. Commonly used modules
The sections below discuss only a tiny fraction of the official and unofficial module library of Python.
For a full set, find the online and printed versions of the Python Library Reference
[http://www.python.org/doc/current/lib/lib.html] Library Reference at the Python documentation
site [http://www.python.org/doc/].

33Python 2.2 quick referenceNew Mexico Tech Computer Center

http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/
http://www.python.org/doc/

If you want to use any of these modules, you must import them. See the import statement and the
from statement above.

19.1. The math module
This module provides the usual basic transcendental mathematical functions. All trig functions use
angles in radians. The module has two members:

The constant 3.14159...pi

The base of natural logarithms, 2.1828...e

Functions in this module include:

Angle (in radians) whose cosine is x, that is, arccosine of x.acos(x)

Arcsine of x.asin(x)

Arctangent of x.atan(x)

Angle whose slope is y/x, even if y is zero.atan2(y,x)

True ceiling function; ceil(3.9) yields 4.0, while ceil(-3.9) yields -3.0.ceil(x)

Cosine of x, where x is expressed in radians.cos(x)

Hyperbolic cosine of x.cosh(x)

e to the x power.exp(x)

True floor function; floor(3.9) is 3.0, and floor(-3.9) is -4.0.floor(x)

Given a float x, returns a tuple (m,e) where m is the mantissa and e the binary
exponent of x, and x is equal to m * (2**e). If x is zero, returns the tuple (0.0,
0).

frexp(x)

(x-int(x/y)*y)fmod(x,y)

Returns x * (2**i).ldexp(x, i)

The square root of (x2+y2).hypot(x,y)

Natural log of x.log(x)

Common log (base 10) of x.log10(x)

Returns a tuple (f, i) where f is the fractional part of x, i is the integral part
(as a float), and both have the same sign as x.

modf(x)

Sine of x.sin(x)

Hyperbolic sine of x.sinh(x)

Square root of x.sqrt(x)

Tangent of x.tan(x)

Hyperbolic tangent of x.tanh(x)

19.2. The cmath module: complex math
For computations involving complex numbers, the cmath module includes all the functions of the math
except for atan2, ceil, floor, fmod, frexp, hypot, ldexp, modf, and pow.

In addition, it provides these functions:

New Mexico Tech Computer CenterPython 2.2 quick reference34

Hyperbolic arc cosine of x.acosh(x)

Hyperbolic arc sine of x.asinh(x)

Hyperbolic arc tangent of x.atanh(x)

19.3. The types module
This module contains the type objects for all the different Python types. For any two objects of the same
type or class, applying the type() function to them returns the same object:

>>> import types
>>> type(2.5)
<type 'float'>
>>> type(2.5) is types.FloatType
1

Here are most of the members of the types module. (A few more obscure types exist; see the Python
Library Reference [http://www.python.org/doc/current/lib/lib.html] if you are working with the more
exotic features of the language.)

Built-in function such as dir().BuiltinFunctionType

Built-in method such as the .append() method on a list object.BuiltinMethodType

User-defined class.ClassType

Complex number.ComplexType

Dictionary.DictType

File object.FileType

Floating point number.FloatType

User-defined function.FunctionType

Generator (see generators above).GeneratorType

Instance of a user-defined class.InstanceType

Integer.IntType

List.ListType

Long integer.LongType

Method of a user-defined class.MethodType

The unique object None.NoneType

String.StringType

Tuple.TupleType

Type object.TypeType

Unicode string.UnicodeType

Result returned by xrange().XRangeType

In Python 2.2 and beyond, the name of the type's constructor function is the type object. This works for
int, long, float, str (strings), unicode, tuple, list, and dict (dictionaries). For example:

>>> type(2.5) is float
1

35Python 2.2 quick referenceNew Mexico Tech Computer Center

http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/lib/lib.html

19.4. The string module
This module contains additional features for manipulating strings.

19.4.1. Variables in the string module

Variables defined in the string module include:

digits
The string "0123456789".

lowercase
A string containing all the lowercase letters, "abcdefghijklmnopqrstuvwxyz".

uppercase
A string containing all the uppercase letters, "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

letters
The concatenation of lowercase and uppercase.

punctuation
String of characters that are considered punctuation marks: ! " # $ % & ' () * + , - .
/ : ; < = > ? @ [\] ^ _ ` { | } ~

whitespace
Characters considered whitespace, generally " \t\n\r\f\v".

printable
String containing all the printable characters, the union of letters, digits, punctuation, and
whitespace.

octdigits
The string "01234567".

hexdigits
"0123456789abcdefABCDEF".

19.4.2. Functions in the string module

In addition to the variables and functions in this module, there are a large number of functions that
duplicate the built-in methods on strings. For example, instead of

s.split(",", 1)

you can get the same function with
import string
string.split(s, ",", 1)

In general, for any built-in method
s.m(arg1,arg2,...),

you can import the string module and get the same effect with
string.m(s,arg1,arg2,...),

Additional functions include:

maketrans(s,t)
Builds a translation table to be used as the first argument to the S.translate() string method.
The arguments s and t are two strings of the same length; the result is a translation table that will
convert each character of s to the corresponding character of t.

New Mexico Tech Computer CenterPython 2.2 quick reference36

Here's an example:
>>> import string
>>> bingo=string.maketrans("lLrR", "rRlL")
>>> "Cornwall Llanfair".translate(bingo)
'Colnwarr Rranfail'

join(L[,d])
L must be a sequence. Returns a string containing the members of the sequence with copies of string
d inserted between them. The default value of d is one space. For example,
string.join(['baked', 'beans, 'are', 'off']) returns the string 'baked beans
are off'.

19.5. Regular expression matching with the re module
The re module provides functions for matching strings against regular expressions. See the O'Reilly
book Mastering Regular Expressions by Friedl and Oram for the whys and hows of regular expressions.
We discuss only the commonest functions here. Refer to the Python Library Reference
[http://www.python.org/doc/current/lib/lib.html] for the full feature set.

Note: The raw string notation r'...' is most useful for regular expressions; see raw strings, above.

These characters have special meanings in regular expressions:

Matches any character except a newline..

Matches the start of the string.^

Matches the end of the string.$

Matches zero or more repetitions of regular expression r.r*

Matches one or more repetitions of r.r+

Matches zero or one r.r?

Non-greedy form of r*; matches as few characters as possible. The normal * operator is
greedy: it matches as much text as possible.

r*?

Non-greedy form of r+.r+?

Non-greedy form of r?.r??

Matches from m to n repetitions of r. For example, r'x{3,5}' matches between three and
five copies of letter 'x'; r'0{4}' matches the string '0000'.

r{m,n}

Non-greedy version of the previous form.r{m,n}?

Matches one character from a set of characters. You can put all the allowable characters
inside the brackets, or use a-b to mean all characters from a to b inclusive. For example,

[...]

regular expression r'[abc]' will match either 'a', 'b', or 'c'. Pattern r'[0-9a-zA-
Z]' will match any single letter or digit.

Matches any character not in the given set.[^...]

Matches expression r followed by expression s.rs

Matches either r or s.r|s

Matches r and forms it into a group that can be retrieved separately after a match; see
MatchObject, below. Groups are numbered starting from 1.

(r)

Matches r but does not form a group for later retrieval.(?:r)

Matches r and forms it into a named group, with name n, for later retrieval.(?P<n>r)

37Python 2.2 quick referenceNew Mexico Tech Computer Center

http://www.python.org/doc/current/lib/lib.html

These special sequences are recognized:

Matches the same text as a group that matched earlier, where n is the number of that group.
For example, r'([a-zA-Z]+):\1' matches the string "foo:foo".

\n

Matches only at the start of the string.\A

Matches the empty string but only at the start or end of a word (where a word is set off by
whitespace or a non-alphanumeric character). For example, r'foo\b' would match "foo"
but not "foot".

\b

Matches the empty string when not at the start or end of a word.\B

Matches any digit.\d

Matches any non-digit.\D

Matches any whitespace character.\s

Matches any non-whitespace character.\S

Matches any alphanumeric character.\w

Matches any non-alphanumeric character.\W

Matches only at the end of the string.\Z

Matches a backslash (\) character.\\

There are two ways to use a re regular expression. Assuming you import the module with import
re, you can test whether a regular expression r matches a string s with the construct re.match(r,s).

However, if you will be matching the same regular expression many times, the performance will be
better if you compile the regular expression using re.compile(r), which returns a compiled regular
expression object. You can then check a string s for matching by using the .match(s) method on that
object.

Here are the functions in module re:

compile(r[,f])
Compile regular expression r. Returns a compiled r.e. object; see the table of methods on such objects
below. To get case-insensitive matching, use re.I as the f argument. There are other flags that
may be passed to the f argument; see the Python Library Reference
[http://www.python.org/doc/current/lib/lib.html].

match(r,s[,f])
If r matches the start of string s, return a MatchObject (see below), otherwise return None.

search(r,s[,f])
Like the match() method, but matches r anywhere in s, not just at the beginning.

split(r,s[,maxsplit=m])
Splits string s into pieces where pattern r occurs. If r does not contain groups, returns a list of the
parts of s that match r, in order. If r contains groups, returns a list containing all the characters
from s, with parts matching r in separate elements from the non-matching parts. If the m argument
is given, it specifies the maximum number of pieces that will be split, and the leftovers will be re-
turned as an extra string at the end of the list.

sub(r,R,s[,count=c])
Replace the leftmost non-overlapping parts of s that match r using R; returns s if there is no match.
The R argument can be a string or a function that takes one MatchObject argument and returns

New Mexico Tech Computer CenterPython 2.2 quick reference38

http://www.python.org/doc/current/lib/lib.html

the string to be substituted. If the c argument is supplied (defaulting to 0), no more than c replace-
ments are done, where a value of 0 means do them all.

19.5.1. Compiled regular expression objects

Compiled regular expression objects returned by re.compile() have these methods:

.match(s[,[ps][,pe]])
If the start of string s matches, return a MatchObject; if there is no match, return None. If ps is
given, it specifies the index within s where matching is to start; this defaults to 0. If pe is given, it
specifies the maximum length of s that can be used in matching.

.search(s[,[ps][,pe]])
Like match(), but matches anywhere in s.

.split(s[,maxsplit=m])
Like re.split().

.sub(R,s[,count=c])
Like re.sub().

.pattern
The string from which this object was compiled.

19.5.2. Methods on a MatchObject

A MatchObject is the object returned by .match() or other methods. Such an object has these
methods:

.group([n])
Retrieves the text that matched. If there are no arguments, returns the entire string that matched.
To retrieve just the text that matched the nth group, pass in an integer n, where the groups are
numbered starting at 1. For example, for a MatchObject m, m.group(2) would return the text
that matched the second group, or None if there were no second group.

If you have named the groups in your regular expression using a construct of the form
(?P<name>...), the n argument can be the name as a string. For example, if you have a group
(?P<year>[\d]{4}) (which matches four digits), you can retrieve that field using
m.group("year").

.groups()
Return a tuple (s1,s2,...) containing all the matched strings, where si is the string that matched
the ith group.

.start([n])
Returns the location where a match started. If no argument is given, returns the index within the
string where the entire match started. If an argument n is given, returns the index of the start of the
match for the nth group.

.end([n])
Returns the location where a match ended. If no argument is given, returns the index of the first
character past the match. If n is given, returns the index of the first character past where the nth
group matched.

.span([n])
Returns a 2-tuple (m.start(n),m.end(n)).

39Python 2.2 quick referenceNew Mexico Tech Computer Center

.pos
The effective ps value passed to .match() or .search().

.endpos
The effective pe value passed to .match() or .search().

.re
The regular expression object used to produce this MatchObject.

.string
The s argument passed to .match() or .search().

19.6. The sys module
The services in this module give you access to command line arguments, standard input and output
streams, and other system-related facilities.

argv
sys.argv[0] is the name of your Python script, or "-c" if in interactive mode. The remaining
elements, sys.argv[1:], are the command line arguments, if any.

builtin_module_names
A list of the names of the modules compiled into your installation of Python.

exit(n)
Terminate execution with status n.

modules
A dictionary of the modules already loaded.

path
The search path for modules, a list of strings in search order.

Note: You can modify this list. For example, if you want Python to search directory /u/dora/py-
thon/lib for modules to import before searching any other directory, these two lines will do it:

import sys
sys.path.insert(0, "/u/dora/python/lib")

platform
A string identifying the software architecture.

stdin
The standard input stream as a file object.

stdout
The standard output stream as a file object.

stderr
The standard error stream as a file object.

19.7. The random module: random number generation
randrange([start,]stop[,step])

Return a random element from the sequence range(start,stop,step) .

randint(x,y)
Returns a random integer in the closed interval [x,y]; that is, any result r will satisfy x <= r <=
y.

New Mexico Tech Computer CenterPython 2.2 quick reference40

choice(L)
Returns a randomly selected element from a sequence L.

shuffle(L)
Randomly permute the elements of a sequence L.

random()
Returns a random float in the half-open interval [0.0, 1.0); that is, for any result r, 0.0 <= r <
1.0.

uniform(x,y)
Returns a random float in the half-open interval [x,y).

normalrand(m,s)
Generate a normally distributed pseudorandom number with mean m and standard deviation s.

An assortment of other pseudorandom distributions is available: Beta, circular uniform, exponential,
gamma, Gaussian, log normal, Von Mises, Pareto, and Weibull distributions. See the Python Library
Reference [http://www.python.org/doc/current/lib/lib.html] for details.

19.8. The time module: dates and times
• Epoch time is the time in seconds since some arbitrary starting point. For example, Unix measures

time in seconds since January 1, 1970.

• UTC is Coordinated Universal Time, the time on the zero meridian (which goes through London).

• DST refers to Daylight Savings Time.

A time tuple is a 9-tuple T with these elements, all integers:

Second, in [0,59].T[5]Four-digit year.T[0]

Day of week, 0 for Monday, 6 for Sunday.T[6]Month, 1 for January, 12 for December.T[1]

Ordinal day of the year, in [1,366].T[7]Day of month, in [1,31].T[2]

DST flag: 1 if the time is DST, 0 if it is not
DST, and -1 if unknown.

T[8]Hour, in [0,23].T[3]

 Minute, in [0,59].T[4]

Contents of the time module:

altzone
The local DST offset, in seconds west of UTC (negative for east of UTC).

asctime([T])
For a time-tuple T, returns a string of exactly 24 characters with this format:

"Thu Jun 12 15:25:31 1997"

The default time is now.

clock()
The accumulated CPU time of the current process in seconds, as a float.

ctime([E])
Converts an epoch time E to a string with the same format as asctime(). The default time is now.

daylight
Nonzero if there is a DST value defined locally.

41Python 2.2 quick referenceNew Mexico Tech Computer Center

http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/lib/lib.html

gmtime([E])
Returns the time-tuple corresponding to UTC at epoch time E; the DST flag will be zero. The default
time is now.

localtime([E])
Returns the time-tuple corresponding to local time at epoch time E. The default time is now.

mktime(T)
Converts a time-tuple T to epoch time as a float, where T is the local time.

sleep(s)
Suspend execution of the current process for s seconds, where s can be a float or integer.

strftime(f[,t])
Time formatting function; formats a time-tuple t according to format string f. The default time t
is now. As with the string format operator, format codes start with %, and other text appears un-
changed in the result. See the table of codes below.

time()
The current epoch time, as a float.

timezone
The local non-DST time zone as an offset in seconds west of UTC (negative for east of UTC). This
value applies when daylight savings time is not in effect.

tzname
A 2-tuple (s, d) where s is the name of the non-DST time zone locally and d is the name of the local
DST time zone. For example, in Socorro, NM, you get ('MST', 'MDT').

Format codes for the strftime function include:

Abbreviated weekday name, e.g., "Tue".%a

Full weekday name, e.g., "Tuesday".%A

Abbreviated month name, e.g., "Jul".%b

Full month name, e.g., "July".%B

Day of the month, two digits with left zero fill; e.g. "03".%d

Hour on the 24-hour clock, two digits with zero fill.%H

Hour on the 12-hour clock, two digits with zero fill.%I

Day of the year as a decimal number, three digits with zero fill, e.g. "366".%j

Decimal month, two digits with zero fill.%m

Minute, two digits with zero fill.%M

Either "AM" or "PM". Midnight is considered AM and noon PM.%p

Second, two digits with zero fill.%S

Numeric weekday: 0 for Sunday, 6 for Saturday.%w

Two-digit year. Not recommended!%y

Four-digit year.%Y

If there is a time zone, a string representing that zone; e.g., "PST".%Z

Outputs the character %.%%

New Mexico Tech Computer CenterPython 2.2 quick reference42

19.9. The os module: operating system interface
The variables and methods in the os module allow you to interact with files and directories. In most
cases the names and functionalities are the same as the equivalent C language functions, so refer to
Kernighan and Ritchie, The C Programming Language, second edition, or the equivalent for more details.

environ
A dictionary whose keys are the names of all currently defined environmental variables, and whose
values are the values of those variables.

error
The exception raised for errors in this module.

chdir(p)
Change the current working directory to that given by string p

chmod(p,m)
Change the permissions for pathname p to m. See module stat, below, for symbolic constants to
be used in making up m values.

chown(p,u,g)
Change the owner of pathname p to user id u and group id g.

execv(p,A)
Replace the current process with a new process executing the file at pathname p, where A is a list
of the strings to be passed to the new process as command line arguments.

execve(p,A,E)
Like execv(), but you supply a dictionary E that defines the environmental variables for the new
process.

_exit(n)
Exit the current process and return status code n. This method should be used only by the child
process after a fork(); normally you should use sys.exit().

fork()
Fork a child process. In the child process, this function returns 0; in the parent, it returns the child's
process ID.

getcwd()
Returns the current working directory name as a string.

getegid()
Returns the effective group ID.

geteuid()
Returns the effective user ID.

getgid()
Returns the current process's group ID.

getpid()
Returns the current process's process ID.

getppid()
Returns the parent process's PID (process ID).

getuid()
Returns the current process's user ID.

43Python 2.2 quick referenceNew Mexico Tech Computer Center

kill(p,s)
Send signal s to the process whose process ID is p.

link(s,d)
Create a hard link to s and call the link d.

listdir(p)
Return a list of the names of the files in the directory whose pathname is p. This list will never
contain the special entries "." and ".." for the current and parent directories. The entries may
not be in any particular order.

lstat(p)
Like stat(), but if p is a link, you will get the status tuple for the link itself, rather than the file it
points at.

mkfifo(p,m)
Create a named pipe with name p and open mode m. The server side of the pipe should open it for
reading, and the client side for writing. This function does not actually open the fifo, it just creates
the rendezvous point.

mkdir(p[,m])
Create a directory at pathname p. You may optionally specify permissions m; see module stat below
for the interpretation of permission values.

nice(i)
Renice (change the priority) of the current process by adding i to its current priority.

readlink(p)
If p is the pathname to a soft (symbolic) link, this function returns the pathname to which that link
points.

remove(p)
Removes the file with pathname p, as in the Unix rm command. Raises OSError if it fails.

rename(po, pn)
Rename path po to pn.

rmdir(p)
Remove the directory at path p.

stat(p)
Return a status tuple describing the file or directory at pathname p. See module stat, below, for
the interpretation of a status tuple. If p is a link, you will get the status tuple of the file to which p
is linked.

symlink(s,d)
Create a symbolic link to path s, and call the link d.

system(c)
Execute the command in string c as a sub-shell. Returns the exit status of the process.

times()
Returns a tuple of statistics about the current process's elapsed time. This tuple has the form
(u,s,u',s',r) where u is user time, s is system time, u' and s' are user and system time includ-
ing all child processes, and r is elapsed real time. All values are in seconds as floats.

umask(m)
Sets the “umask” that determines the default permissions for newly created files. Returns the previous
value. Each bit set in the umask corresponds to a permission that is not granted by default.

New Mexico Tech Computer CenterPython 2.2 quick reference44

uname()
Returns a tuple of strings descriping the operating system's version: (s,n,r,v,m) where s is the
name of the operating system, n is the name of the processor (node) where you are running, r is
the operating system's version number, v is the major version, and m describes the type of processor.

utime(p,t)
The t argument must be a tuple (a, m) where a and m are epoch times. For pathname p, set the
last access time to a and the last modification to m.

wait()
Wait for the termination of a child process. Returns a tuple (p,e) where p is the child's process ID
and e is its exit status.

waitpid(p,o)
Like wait(), but it waits for the process whose ID is p. The option value o specifies what to do if
the child is still running. If o is 0, you wait for the child to terminate. Use a value of os.WNOHANG
if you don't want to wait.

WNOHANG
See waitpid() above.

19.10. The stat module: file statistics
The stat module contains a number of variables used in encoding and decoding various items returned
by certain methods in the os module, such as stat() and chmod().

First, there are constants for indexing the components of a “status tuple” such as that returned by
os.stat():

The file's permissions.ST_MODE

The i-node number.ST_INO

The device number.ST_DEV

The number of hard links.ST_NLINK

The user ID.ST_UID

The group ID.ST_GID

The current size in bytes.ST_SIZE

The epoch time of last access (see the time module for interpretation of times).ST_ATIME

The epoch time of last modification.ST_MTIME

The epoch time of the file's creation.ST_CTIME

The following functions are defined in the stat module for testing a mode value m, where m is the
ST_MODE element of the status tuple. Each function is a predicate:

Is this a directory?S_ISDIR(m)

Is this a character device?S_ISCHR(m)

Is this a block device?S_ISBLK(m)

Is this an ordinary file?S_ISREG(m)

Is this a FIFO?S_ISFIFO(m)

Is this a soft (symbolic) link?S_ISLNK(m)

45Python 2.2 quick referenceNew Mexico Tech Computer Center

Is this a socket?S_ISSOCK(m)

These constants are defined for use as mask values in testing and assembling permission values such
as those returned by os.stat():

SUID (set user ID) bit.S_ISUID

SGID (set group ID) bit.S_ISGID

Owner read permission.S_IRUSR

Owner write permission.S_IWUSR

Owner execute permission.S_IXUSR

Group read permission.S_IRGRP

Group write permission.S_IWGRP

Group execute permission.S_IXGRP

World read permission.S_IROTH

World write permission.S_IWOTH

World execute permission.S_IXOTH

19.11. The path module: file and directory interface
These functions allow you to deal with path names and directory trees. To use them, import the os
module and then use os.path. For example, to get the base name of a path p, use os.path.base-
name(p).

basename(p)
Return the base name portion of a path name string p. See split(), below.

commonprefix(L)
For a list L containing pathname strings, return the longest string that is a prefix of each element in
L.

exists(p)
Predicate for testing whether pathname p exists.

expanduser(p)
If p is a pathname starting with a tilde character (~), return the equivalent full pathname; otherwise
return p.

isabs(p)
Predicate for testing whether p is an absolute pathname (e.g., starts with a slash on Unix systems).

isfile(p)
Predicate for testing whether p refers to a regular file, as opposed to a directory, link, or device.

islink(p)
Predicate for testing whether p is a soft (symbolic) link.

ismount(p)
Predicate for testing whether p is a mount point, that is, whether p is on a different device than its
parent directory.

New Mexico Tech Computer CenterPython 2.2 quick reference46

join(p,q)
If q is an absolute path, returns q. Otherwise, if p is empty or ends in a slash, returns p+q, but oth-
erwise it returns p+'/'+q.

normcase(p)
Return pathname p with its case normalized. On Unix systems, this does nothing, but on Macs it
lowercases p.

samefile(p,q)
Predicate for testing whether p and q are the same file (that is, the same inode on the same device).
This method may raise an exception if os.stat() fails for either argument.

split(p)
Return a 2-tuple (H,T) where T is the tail end of the pathname (not containing a slash) and H is
everything up to the tail. If p ends with a slash, returns (p,''). If p contains no slashes, returns
('',p). The returned H string will have its trailing slash removed unless H is the root directory.

splitext(p)
Returns a 2-tuple (R,E) where E is the “extension” part of the pathname and R is the “root” part.
If p contains at least one period, E will contain the last period and everything after that, and R will
be everything up to but not including the last period. If p contains no periods, returns (p,'').

walk(p,V,a)
Walks an entire directory structure starting at pathname p. See below for more information.

The os.path.walk(p,V,a) function does the following for every directory at or below p (including
p if p is a directory), this method calls the “visitor function” V with arguments

V(a,d,N)

where:

The same a passed to os.path.walk(). You can use a to provide information to the V()
function, or to accumulate information throughout the traversal of the directory structure.

a

A string containing the name of the directory being visited.d

A list of all the names within directory d. You can remove elements from this list in place if
there are some elements of d that you don't want walk() to visit.

N

19.12. Low-level file functions in the os module
This group of functions operates on low-level file descriptors, which use integers for file handles. In
these functions, the f argument is a low-level-file descriptor. These functions are part of module os.

Use these functions only when you really need low-level I/O. Most applications will use a “file object”
as produced by the built-in open() function; see file objects above.

close(f)
Close file f.

dup(f)
Returns a new file descriptor that is a duplicate of f.

fstat(f)
Return the file's status tuple in the same format as os.stat().

47Python 2.2 quick referenceNew Mexico Tech Computer Center

lseek(f,p,w)
Change the current position of f. The p and f arguments are interpreted as in the .seek() method
for file objects.

open(p,f,m)
Open the file at pathname p. The value f describes various options, such as read or write access,
and whether to create the file if it doesn't exist; see /usr/include/fcntl.h for C-language
definitions for the f value. If you are creating the file, you can supply m to specify the initial permis-
sions of the file as in chmod(). Returns a low-level file descriptor.

pipe()
Create a pipe. Returns a tuple (fr,fw) of two file descriptors, fr for reading and fw for writing.

read(f,n)
Read no more than n bytes. Returns the data as a string.

write(f,s)
Write string s.

New Mexico Tech Computer CenterPython 2.2 quick reference48

