
Training Workshop

Spectral Methods in Seismic Modelling

by

Géza Seriani & Ekkehart Tessmer

– p. 1/115

Why pseudospectral modelling?

High accuracy

— numerical dispersion & attenuation are almost eliminated

Few grid points per minimum wavelength

— allows for numerical models with coarse grids

Computational efficiency

— reduces storage memory & computational time

– p. 2/115

Equation of motion

Equation of motion:

̺
∂2ui

∂t2
=

∂σij

∂xj
+ fi

Stress-strain relation:
σij = cijklεkl

Strain tensor:

εij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

Isotropic stress-strain relation:

σij = λεkkδij + 2µεij

– p. 3/115

Acoustic wave equations

Definition of pressure:
σij = −pδij

Variable density wave equation:

∂

∂x

(

1

̺

∂p

∂x

)

+
∂

∂y

(

1

̺

∂p

∂y

)

+
∂

∂z

(

1

̺

∂p

∂z

)

=
1

̺c2

∂2p

∂t2

Constant density wave equation

∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
=

1

c2

∂2p

∂t2

– p. 4/115

Numerical solution

For solving the wave equation using computers we need to define:

1) the discrete time derivative operator:

∂

∂t
−→ Dt

2) the discrete space derivative operators:

∂

∂x
−→ Dx

∂

∂y
−→ Dy

∂

∂z
−→ Dz

– p. 5/115

Numerical solution (cont’d)

The discrete space derivative operators DN can be obtained by
differentiating the assumed expansion:

u(x) ≈ uN (x) =
N
∑

k=0

ûk ϕk(x)

The basis (trial) functions ϕk(x) are given, ûk must be determined.

In the spectral methods the chosen basis functions are orthogonal:

periodic problems –> trigonometric functions eikx ,

non-periodic problems –> Chebyshev Tk or Legendre Lk

polynomials .

– p. 6/115

Numerical solution (cont’d)

The pseudo-spectral (collocation, interpolation) methods are
based on the collocation constraint :

uN (xi) = u(xi) , i = 0, . . . , N,

where the xi are N + 1 collocation points.
Namely,

N
∑

k=0

ûk ϕk(xi) = u(xi) , i = 0, . . . , N,

which determines the N + 1 coefficients ûk.

For the existence of ûk , the collocation points must satisfy

det{ϕk(xi)} = 0.
– p. 7/115

Numerical solution (cont’d)

The collocation constraint is not used in practice.

The N + 1 coefficients ûk are obtained explicitly using:

special sets {xi} , of collocation points,

the associated discrete orthogonality property of ϕk(xi) .

– p. 8/115

Numerical solution (cont’d)

The collocation constraint allows for expressing the approximant in
terms of uN (xi), the values at the collocation points:

uN (x) =
N
∑

i=0

uN (xi) φi(x)

(

=
N
∑

k=0

ûk ϕk(x)

)

where φi(x) are the Lagrange basis (cardinal basis, shape
functions), polynomials based on the grid points {xi}:

trigonometric polynomials in the Fourier case,

algebraic polynomials in the Chebyshev & Legendre case .

– p. 9/115

Numerical solution (cont’d)

The differentiation can be expressed in terms of the derivative
values at the collocation points u

′

N (xi) :

∂xuN (x) =

N
∑

i=0

uN (xi) ∂xφi(x) =

N
∑

i=0

u
′

N (xi) φi(x)

where

u
′

N (xi) =
N
∑

j=0

(DN)ij uN (xj)

in matrix form
U

′

N = DN UN

– p. 10/115

Numerical solution (cont’d)

The pseudo-spectral error is decreasing faster than any power of
N :

Pseudo − spectral error ≈ O[(
1

N
)N]

Infinite order or exponential or spectral convergence due to:

optimum basis choice (orthogonal polynomials),

optimum collocation points (no Runge phenomenon),

global influence of the high-order polynomials over
the whole domain .

– p. 11/115

Numerical solution (cont’d)

-1 -0.5 0 0.5 1

Chebyshev-Gauss-Lobatto points

Not equispaced, Clustered towards the ends, Uneven grid

– p. 12/115

Numerical solution (Runge phenomenon)

Big errors always near the endpoints

– p. 13/115

Numerical solution (Runge phenomenon)

Equispaced points «—– 9 —–» Chebyshev points

– p. 14/115

Numerical solution (cont’d)

One high-order polynomial for WHOLE domain

Multiple overlapping low-order polynomials

Non-overlapping polynomials for each subdomain

– p. 15/115

Fourier derivative

The Fourier transform is defined by:

H(ω) =

∫ +∞

−∞

h(t)e−iωtdt

and its inverse by:

h(t) =
1

2π

∫ +∞

−∞

H(ω)e+iωtdω

– p. 16/115

Fourier derivative (cont’d)

Taking the derivative yields:

d

dt
h(t) =

d

dt

[

1

2π

∫ +∞

−∞

H(ω)e+iωtdω

]

Using Leibniz’ rule yields:

d

dt
h(t) =

1

2π

∫ +∞

−∞

∂

∂t

[

H(ω)e+iωt
]

dω

=
1

2π

∫ +∞

−∞

iωH(ω)e+iωtdω

Therefore:
h′(t) ⇐⇒ iωH(ω)

– p. 17/115

Fourier derivative (cont’d)

The discrete Fourier transform pair reads:

Hn =

N−1
∑

k=0

hke
−i 2π

N
nk

and

hn =
1

N

N−1
∑

k=0

Hke
+i 2π

N
nk

where hn = h(tn), n = 0, . . . , N − 1 with tn = n · ∆t
and Hn = H(ωn), n = 0, . . . , N − 1 with ωn = n · ∆ω

– p. 18/115

Fourier derivative (cont’d)

ωn =











2π
N∆tn if n = 0, . . . , [N/2],

−2π
N∆t(N − n) if n = [N/2] + 1, . . . , N − 1

Frequency
Angular

−3∆ω

−4∆ω

−2∆ω

−∆ω

∆ω

2∆ω

3∆ω

4∆ω

Index0
1 2 3 4 5 6 70

– p. 19/115

Fourier derivative (cont’d)

Procedure for Fourier derivative:

�

�

�

�
hn

DFT−→ Hn −→ iωnHn
DFT−1

−→ h′n

– p. 20/115

Fourier derivative (cont’d)

Simultaneous calculation of the derivatives of two real functions:

Two real functions: g(t) , h(t)

One complex function: f(t) = g(t) + ih(t)

Derivative of complex function: f ′(t) = g′(t) + ih′(t)

Derivatives of two real functions: g′(t) , h′(t)

– p. 21/115

Fourier derivative (cont’d)

Derivatives of even and odd order:

consider real function f(t)

Re [H(ω)] : even

Im [H(ω)] : odd

f(ω) = ω : odd

if we multiply H(ω) by iω

Re [iωH(ω)] : even

Im [iωH(ω)] : odd

– p. 22/115

Fourier derivative (cont’d)

The discrete spectrum is:

Hn =

N−1
∑

k=0

hke
−i 2π

N
nk

Nyquist component, where N is even:

HN/2 =
N−1
∑

k=0

hke
−i 2π

N

N

2
k

=

N−1
∑

k=0

hke
−iπk

e−iπk = ±1 =⇒ Nyquist component always is real!

– p. 23/115

Fourier derivative (cont’d)

Multiplying the real Nyquist component by iω results in a purely
imaginary Nyquist component of the derivative.
However, the Nyquist component of a real function should have a
real Nyquist component. This is a contradiction!
Solution: Use of Fourier transform of odd order, where the Nyquist
frequency is not present.

 0
 1

 2
 3

 4
 5

 6

 7
 8

 9
 0

 1

 2
 3

 4

 5 6

 7
 8

 9

10

– p. 24/115

Chebyshev derivative

A function can be represented by Chebyshev polynomials:

f(x) =

∞
∑

k=0

akTk(x)

Likewise, a discrete function f(xj) can be approximated by:

f(xj) =
N
∑

k=0

akTk(xj), j = 0, . . . , N

where the non-equidistant abscissas are:

xj = cos
πj

N
, j = 0, . . . , N.

– p. 25/115

Chebyshev derivative (cont’d)

The idea is to calculate the derivative of f(xj) by

finding the coefficients ak of f(xj)

calculate coefficients bk of the derivative from the ak

calculate the function f ′(xj) from the bk

– p. 26/115

Chebyshev derivative (cont’d)

The coefficients ak are given by:

ak =
2

N

N
∑

j=0

αjf(xj)Tk(xj) ·
{

1 if k 6= 0 ∧ k 6= N,

1/2 if k = 0 ∨ k = N

with

αj =

{

1/2 if j = 0 ∨ j = N,

1 else

Expressing Tk in terms of cosine-functions

Tk(xj) = cos

(

kjπ

N

)

and substituting 2
N αjf(xj) by g(xj)

– p. 27/115

Chebyshev derivative (cont’d)

We find

ak =
N
∑

j=0

g(xj) · cos
(

kjπ

N

)

· αk

This is similar to the real part of a DFT.

Extension to 2N function values, where
g(xj) = 0, j = N + 1, . . . , 2N − 1 (zero padding) yields:

ak =
2N−1
∑

j=0

g(xj) · cos

(

k
j2π

2N

)

· αk, k = 0, . . . , N

Apart from αk, this is exactly the real part of the discrete
Fourier transform of g(xj)

– p. 28/115

Chebyshev derivative (cont’d): bk

Starting from

g(x) =

N
∑

k=0

akTk(x)

the derivative is

g′(x) =
N
∑

k=0

akT
′
k(x)

or

g′(x) =

N
∑

k=0

bkTk(x)

We search for a relation between the coefficients ak and bk

– p. 29/115

Chebyshev derivative (cont’d): bk

Equating the last two right hand sides and comparing respective
terms of Tk(x) yields:

bk−1 = bk+1 + 2kak

and
b0 = b2/2 + a1

Starting with bN+1 = bN = 0, by the downward recurrence
all bk, k = N, . . . , 2 can be calculated.

From these the derivative can finally be calculated:

g′(x) =
N
∑

k=0

bkTk(x)

– p. 30/115

Chebyshev derivative (the physical space)

A function can be approximated by Lagrange (-Chebyshev)
interpolation polynomials:

f(x) =
N
∑

i=0

f(xi) φi(x)

(

=
N
∑

k=0

akTk(x)

)

.

The shape functions φi(x) are polynomials of degree N and
satisfy the conditions:

φi(xj) = δij , i, j = 0, . . . , N.

and are based on the Chebyshev-Gauss-Lobatto grid points {xi} :

xi = cos
πi

N
, i = 0, . . . , N.

– p. 31/115

Chebyshev derivative (Shape functions)

– p. 32/115

Chebyshev derivative (cont’d)

{xi} Chebyshev-Gauss-Lobatto points properties:

extremal points of Chebyshev polynomials TN (x),

zeros of the polynomial (1 − x2) T ′
N (x),

for x → xi :
(1 − x2) T ′

N (x)

x − xi
→ (−1)i+1 c̄i N

2,

where c̄i = {2 (i = 0, N) ‖ 1 (i 6= 0, N)}.

– p. 33/115

Chebyshev derivative (cont’d)

Chebyshev shape functions φi(x):

φi(x) =
(−1)i+1 (1 − x2) T ′

N (x)

c̄i N2 (x − xi)

Chebyshev differentiation matrix DN :

(DN)ij =

(

dφj

dx

)

xi

, i, j = 0, . . . , N

– p. 34/115

Chebyshev derivative (cont’d)

Chebyshev differentiation matrix DN :

(DN)ij =
c̄i

c̄j

(−1)i+j

xi − xj
, i 6= j ,

(DN)ii = − xi

2(1 − x2
i)

, i 6= 0, N ,

(DN)00 = − (DN)NN =
1

6
(2 N2 + 1).

Warning !!!
Possible round-off errors with endpoint values for large N .

– p. 35/115

Chebyshev derivative (cont’d)

-1 -0.5 0 0.5 1

Chebyshev-Gauss-Lobatto points

– p. 36/115

Chebyshev derivative (first cure)

More accurate Chebyshev differentiation matrix DN :

(DN)ij =
c̄i

2 c̄j

(−1)i+j

sin π(i+j)
2N sin π(i−j)

2N

, i 6= j ,

(DN)ii = −1

2

cos π
N i

sin2 π
N i

, i 6= 0, N ,

(DN)00 = − (DN)NN =
1

6
(2 N2 + 1),

(DN)0N = − (DN)N0 =
1

2
(−1)N .

Minimize the round-off errors by using trigonometrical identities to
express the quantity (xi − xj) and (1 − x2

i).

– p. 37/115

Chebyshev derivative (second cure)

A further reduction of the round-off errors by using the identity:

N
∑

j=0

(DN)ij = 0 , i = 0, . . . , N .

Even more accurate Chebyshev differentiation matrix DN :

(DN)ij =
c̄i

2 c̄j

(−1)i+j

sin π(i+j)
2N sin π(i−j)

2N

, i 6= j ,

(DN)ii = −
N
∑

j=0
j 6=i

(DN)ij , i = 0, . . . , N .

– p. 38/115

Chebyshev derivative (cont’d)

The differentiation by matrix-vector multiplication

f ′
i =

N
∑

j=0

(DN)ij fj

can be efficient for a set of points {xi}:

in the range of 100 - 500,

using vector machines or super-scalar machines,

using BLAS optimized routines.

– p. 39/115

Chebyshev derivative (cont’d)

– p. 40/115

Accuracy

Accuracy of the numerical solution depends on errors generated
by:

(1) Numerical dispersion
Different Fourier modes in numerical schemes travel at different
speeds (they should travel at the same speed).

(2) Gibbs-type oscillations
Spurious high-frequency oscillations are generated by sharp in-
terfaces , rapid variations and discontinuities in the medium.

They are a consequence of the discretization order of the differ-
entiation operator.

– p. 41/115

Accuracy (cont’d): d/dx

Assume periodicity and N + 1 equi-spaced (h = ∆x = 2π/N)

gridpoints within the period [0, 2π] .

Range of the allowed Fourier modes in the grid −→ −π
h ≤ k ≤ π

h .

For a mode eikx the derivative d/dx is :

Exact (PS)
d

dx
eikx = ikeikx

Second-order FD

D2 eikx =
eik(x+h) − eik(x−h)

2h
= i

sinkh

h
eikx = iγ2(kh)k eikx

– p. 42/115

Accuracy (cont’d): d/dx

The multiplicative factor γp(kh) can be computed for all the
centered P th-order FD schemes Dp, p = 2, 4, 6, . . . :

γp(kh) =
sin kh

kh

p/2−1
∑

l=0

(l!)2

(2l + 1)!
22l

(

sin
kh

2

)2l

- High Fourier modes have an incorrect multiplicative factor.

- As p −→ ∞ there is convergence to correct values (PS) .

– p. 43/115

Accuracy (cont’d)

Multiplicative factor of different approximations for d/dx:

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k=Π�h

Π�h

Exact (PS)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k=Π�h

Π�h

Exact (PS), 2nd Order

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k=Π�h

Π�h

Exact (PS), 2nd Order, 6th Order

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k=Π�h

Π�h

Exact (PS), 2nd Order, 6th Order, 20th Order

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k=Π�h

Π�h

Exact (PS), 2nd Order, 6th Order, 20th Order, 120th Order
– p. 44/115

Accuracy (cont’d)

Consider the model problem:

∂u

∂t
+ c

∂u

∂x
= 0 with u(x, 0) = eikx

The solution is :
u(x, t) = eik(x−c t)

On the grid points :

dũj(t)

dt
+ ic γp(kh)k ũj(t) = 0 with ũj(0) = eikxj

The solution is :
ũj(t) = eik(xj−c γp(kh)t)

– p. 45/115

Accuracy (cont’d)

The error (phase) ep = ‖ u − ũ ‖ is:

ep = ‖ eik(xj−c t) − eik(xj−c γp(kh)t) ‖ = ‖ eikc t − eikc γp(kh)t ‖

or
ep = k c t [1 − γp(kh)] + O

[

(kh)p+2
]

We study the error after q period in time (t = 2πq/(kc)) and when
it is smaller than a given tolerance ep ≤ ǫ.

The number of grid points per wavelength is :

G =
λ

∆x
=

NG

k
=

2π

hk

– p. 46/115

Accuracy (cont’d): at final time (Fornberg, 1987)

Propagation dist. in # of Wavelengths for highest wave mode
– p. 47/115

Dispersion and stability

Stability analysis in the following is performed for the 1D and 2D
finite difference and the Fourier method with FD time integration.

It is done for a constant velocity medium.
This usually is sufficient, since it is only necessary to maintain
stability for the highest velocity. For lower velocities the schemes
are then automatically stable.

Due to the truncation error of FD operators numerical grid disper-
sion is present. It depends on the discretization and on the order
of the FD operator.

– p. 48/115

Dispersion and stability: 1D FD

1D wave equation:
∂2p

∂t2
= c2 ∂2p

∂x2

FD approximation:

pn+1
j − 2pn

j + pn−1
j

(∆t)2
= c2

pn
j+1 − 2pn

j + pn
j−1

(∆x)2

Inserting the harmonic solution

pn
j = ei(kj∆x−ωn∆t)

we get

– p. 49/115

Dispersion and stability (cont’d): 1D FD

ei(kj∆x−ω(n+1)∆t) − 2ei(kj∆x−ωn∆t) + ei(kj∆x−ω(n−1)∆t)

(∆t)2

= c2 ei(k(j+1)∆x−ωn∆t) − 2ei(kj∆x−ωn∆t) + ei(k(j−1)∆x−ωn∆t)

(∆x)2

The left side can further be simplified:

ei(kj∆x) ·
(

e−iω(n+1)∆t − 2e−iωn∆t + e−iω(n−1)∆t
)

/(∆t)2

= ei(kj∆x−ωn∆t) ·
(

e−iω∆t − 2 + eiω∆t
)

/(∆t)2

= ei(kj∆x−ωn∆t) ·
(

−4 sin2 ω∆t

2

)

/(∆t)2

– p. 50/115

Dispersion and stability (cont’d): 1D FD

Similarly we simplify the right hand side and get:

ei(kj∆x−ωn∆t) ·
(

−4 sin2 ω∆t
2

)

(∆t)2
= c2 ei(kj∆x−ωn∆t) ·

(

−4 sin2 k∆x
2

)

(∆x)2

Further simplification leads to:

sin2 ω∆t
2

(∆t)2
= c2 sin2 k∆x

2

(∆x)2

Solving for ω(k) yields the dispersion relation:

ω(k) =
2

∆t
arcsin

(

c∆t

∆x
sin

k∆x

2

)

Stability, if argument of arcsin not larger than unity ⇒ c∆t

∆x
<= 1

– p. 51/115

Dispersion and stability (cont’d): 1D Fourier

In case of the Fourier method we have:

pn+1
j − 2pn

j + pn−1
j

(∆t)2
= −k2c2pn

j

Inserting the harmonic solution as before:

−4 sin2 ω∆t
2

(∆t)2
= −k2c2

Solving for ω we find the dispersion relation:

ω(k) =
2

∆t
arcsin

kc∆t

2

– p. 52/115

Dispersion and stability (cont’d): 1D Fourier

For the Fourier derivative kmax = π
∆x holds.

Inserting this into the argument of the arcsin, we find that stability is
maintained, if

π

2

c · ∆t

∆x
≤ 1 ⇒ α ≤ 2

π
≈ 0.64

– p. 53/115

Dispersion and stability (cont’d): 1D dispersion

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

C
p/

C

k dx

a) 1D Dispersion Relation FD 2-2 Scheme

0.64

0.55

0.45

0.20

Courant Number

– p. 54/115

Dispersion and stability (cont’d): 1D dispersion

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

C
p/

C

k dx

b) 1D Dispersion Relation Fourier-FD Scheme

0.64

0.55

0.45

0.20

Courant Number

– p. 55/115

Dispersion and stability: 2D FD

2D wave equation:

∂2p

∂t2
= c2

(

∂2p

∂x2
+

∂2p

∂z2

)

According to the 1D FD case we obtain:

sin2 ω∆t
2

(∆t)2
= c2

(

sin2 kx∆x
2

(∆x)2
+

sin2 kz∆z
2

(∆z)2

)

and with kx = k cos ϑ, kz = k sin ϑ and ∆x = ∆z = ∆

sin2 ω∆t
2

(∆t)2
=

c2

∆2

(

sin2

(

∆k cos ϑ

2

)

+ sin2

(

∆k sin ϑ

2

))

– p. 56/115

Dispersion and stability (cont’d): 2D FD

Solving for ω yields

ω(k) =
2

∆t
arcsin

(

c∆t

∆
·
√

sin2

(

∆k cos ϑ

2

)

+ sin2

(

∆k sin ϑ

2

)

)

Stability is maintained, if
c∆t

∆
·
√

2 ≤ 1.

A n-dimensional scheme is stable, if
c∆t

∆
·
√

n ≤ 1.

– p. 57/115

Dispersion and stability (cont’d): 2D Fourier

According to the 1D Fourier case we obtain:

−4 sin2 ω∆t
2

(∆t)2
= c2

(

−k2
x − k2

z

)

or
sin ω∆t

2

∆t
=

c
√

k2
x + k2

z

2

Solving for ω we obtain the dispersion relation:

ω(k) =
2

∆t
arcsin

(

c
√

k2
x + k2

z∆t

2

)

With kmax =
π

∆
(∆ = ∆x = ∆z) stability is maintained, if

π√
2

c∆t

∆
≤ 1.

n-dimensional case:
√

nπ

2

c∆t

∆
≤ 1.

– p. 58/115

Dispersion and stability (cont’d): 2D dispersion

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

C
p/

C

k dx

a) 2D Dispersion Relation FD 2-2 Scheme

0

15

30

45

Courant Number: 0.7

Angle in Degrees

– p. 59/115

Dispersion and stability (cont’d): 2D dispersion

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3

C
p/

C

k dx

b) 2D Dispersion Relation Fourier-FD Scheme

Courant Number: 0.45

Angles: 0, 15, 30, 45 Degrees

– p. 60/115

Time integration

Starting from the 1D wave equation

∂2p

∂t2
= c2 ∂2p

∂x2
+ S

we need to perform time integration to solve for p.

Discretizing in time, i.e. pn = p(n · ∆t) with the abbreviation

Rn =
∂2pn

∂x2

the wave equation reads:

∂2pn

∂t2
= c2Rn + Sn

– p. 61/115

Time integration (cont’d): FD

Using finite differences for the left hand side:

pn+1 − 2pn + pn−1

(∆t)2
= c2Rn + Sn

This can be solved for pn+1:

pn+1 = 2pn − pn−1 + (∆t)2[c2Rn + Sn]

The solution can thus be extrapolated in time by a so called
time stepping scheme with time steps of size ∆t until the
maximum propagation time is reached.

– p. 62/115

Time integration (cont’d): Formal solution

Consider the 1D wave equation (second order PDE):

∂2p

∂t2
= c2 ∂2p

∂x2
+ S

This can be rewritten as a system of first order PDEs:

∂

∂t







p

ṗ






=









0 1

c2 ∂2

∂x2
0















p

ṗ






+







0

S







System of 2N coupled PDEs, if number of grid points is N .

– p. 63/115

Time integration (cont’d): Formal solution

With

V(t) =







p

ṗ






, A =









0 1

c2 ∂2

∂x2
0









and f(t) =







0

S







the wave equation can be rewritten:

∂

∂t
V(t) = A · V(t) + f(t)

The formal solution is:

V(t) = etAV(0) +

t
∫

0

eτA f(t − τ) dτ

– p. 64/115

Time integration (cont’d): Taylor expansion

To represent operators of the form etA we use the Taylor expansion:

etA = I + tA +
t2A2

2!
+

t3A3

3!
+

t4A4

4!
+ · · ·

Then

etAV(0) = V(0) + tAV(0) +
t2

2!
A(AV(0)) +

t3

3!
A(A(AV(0))) + · · ·

– p. 65/115

Time integration (cont’d): Taylor expansion

If we assume that f(t) is constant during the time period t

V(t) = etAV(0) +

t
∫

0

eτA f(t − τ) dτ

can be simplified:

V(t) = etAV(0) + (etA − I)/A f(t)

This can be rearranged:

V(t) = V(0) +
(etA − I)

A
(AV(0) + f(t))

– p. 66/115

Time integration (cont’d): Taylor expansion

The Taylor expansion of (etA − I) /A is:

(etA − I)

A
= t I +

t2

2!
A +

t3

3!
A2 +

t4

4!
A3 + · · ·

A useful approximation can be obtained, if truncated after fourth
term. This is then equivalent to a fourth order Runge-Kutta
scheme.

As always, truncation means an error, which in general leads to
dispersion. The Taylor expansion converges relative slowly.
Therefore dispersion is difficult to avoid.

– p. 67/115

Time integration (cont’d): Chebyshev exp.

More effective is the Chebyshev expansion:

ez =

∞
∑

k=0

ck Jk(tR) Qk

(z

tR

)

where c0 = 1 and ck = 2 if k 6= 0, and |z| < tR

Jk are Bessel functions.
Qk are modified Chebyshev polynomials. Relation to ordinary
Chebyshev polynomials Tk(x):

Qk(x) := ik Tk(−ix)

Q0(x) = 1, Q1(x) = x, Q2(x) = 2x2 + 1 etc.

– p. 68/115

Time integration (cont’d): Chebyshev exp.

Recurrence relation:

Qn+1(x) = 2xQn(x) + Qn−1(x)

The exponential matrix operator then reads:

etA =

M
∑

k=0

ck Jk(tR) Qk

(

A

R

)

Converges fast with machine accuracy, if M > tR. R is the largest
eigenvalue of A.

Modified Chebyshev polynomials can be calculated recursively.
Argument x is replaced by A

R . Then:

Q0(
A

R) = I, Q1(
A

R) = A

R , Q2(
A

R) = A
2

R2 + I, etc.

– p. 69/115

Time integration (cont’d): Tal-Ezer method

Formal solution (again):

V(t) = etAV(0) +

t
∫

0

eτA f(t − τ) dτ

Solution without source term:

V(t) =
M
∑

k=0

ck Jk(tR) Qk(
A

R
) V(0)

We start the recurrence by

Q0(
A

R
)V(0) = V(0) , Q1(

A

R
)V(0) =

A

R
V(0)

– p. 70/115

Time integration (cont’d): Tal-Ezer method

Formal solution with source term (zero initial conds.):

V(t) =





t
∫

0

eτA h(t − τ) dτ



g(x)

f(x, t) = g(x) · h(t), i.e. assumed separable.

Solution using Chebyshev expansion:

V(t) =
M
∑

k=0





t
∫

0

ck Jk(τR) h(t − τ) dτ



Qk(
A

R
) g(x)

– p. 71/115

Time integration (cont’d): Tal-Ezer method

Using the abbreviation

bk =

t
∫

0

ck Jk(τR) h(t − τ) dτ

the solution is:

V(t) =

M
∑

k=0

bk Qk(
A

R
) g(x)

Only bk is time dependent. Therefore, the solution for different
times t require only different sets of bk.
The Chebyshev polynomials, need not to be calculated again.

– p. 72/115

Time integration (cont’d): REM

We start with the second order PDE in operator notation:

∂2p

∂t2
= −L2p

We define the operator −L2 = c2 ∂2

∂x2

The formal solution is

p(t) = cosLt p(0) +
sinLt

L
ṗ(0)

Adding the solution at time −t yields

p(t) = −p(−t) + 2 cosLt p(0)

– p. 73/115

Time integration (cont’d): REM

Excursus:

Expansion of the operator cosLt into a Taylor series and insert-
ing into the last equation yields:

p(t) = −p(−t) + 2 p(0) − L2t2p(0) +
1

12
L4t4p(0) − . . .

Truncating after the second order term and replacing
p(t) by pn+1, p(0) by pn and p(−t) by pn−1 results in the well
known second order FD time integration scheme:

pn+1 = −pn−1 + 2 pn + c2 (∆t)2
∂2pn

∂x2

– p. 74/115

Time integration (cont’d): REM

Expansion of cosLt for modified Chebyshev polynomials reads:

cosLt =

∞
∑

k=0

c2k J2k(tR) Q2k

(

iL

R

)

Only modified Chebyshev polynomials of even order are present.
Therefore, the solution is:

p(t) = −p(−t) + 2

M/2
∑

k=0

c2k J2k(tR) Q2k(
iL

R
) p(0)

Since the indices of the modified Chebyshev polynomials Q2k(
iL
R)

are even numbered, only powers of −L2/R2 occur.

– p. 75/115

Time integration (cont’d): REM

Here a recurrence relation with index steps of two are required:

Qn+2(x) = (4x2 + 2) Qn(x) − Qn−2(x)

The recurrence is initiated by

Q0(
iL

R
) p(0) = p(0)

and

Q2(
iL

R
) p(0) = (2 · −L2

R2
+ I) p(0)

– p. 76/115

Time integration (cont’d): REM

Formal solution with source term (zero initial conds.):

p(t) =





t
∫

0

sinLτ

L
h(t − τ) dτ



 g(x)

Expansion of the sine-function for modified Chebyshev
polynomials:

i sinLt =
∞
∑

k=0

c2k+1 J2k+1(tR) Q2k+1(
iL

R
)

and therefore

sinLt

L
=

∞
∑

k=0

c2k+1
J2k+1(tR)

R

R

iL
Q2k+1(

iL

R
)

– p. 77/115

Time integration (cont’d): REM

Solution with Chebyshev expansion:

p(t) =





M/2
∑

k=0

t
∫

0

c2k+1
J2k+1(τR)

R
h(t − τ) dτ

R

iL
Q2k+1(

iL

R
)



g(x)

Using the abbreviation

bk =

t
∫

0

ck
Jk(τR)

R
h(t − τ) dτ

the solution is:

p(t) =





M/2
∑

k=0

b2k+1
R

iL
Q2k+1(

iL

R
)



g(x)

– p. 78/115

Time integration (cont’d): REM

The recurrence is initiated by

R

iL
Q1(

iL

R
) g(x) = g(x)

and
R

iL
Q3(

iL

R
) g(x) = (4 · −L2

R2
+ 3 · I) g(x)

Only terms of odd order are present. Because of the factor R/iL

one obtains also here only powers of −L2/R2

– p. 79/115

Time integration (cont’d): REM

0

0.2

0.4

0.6

0.8

T
im

e
[s

]

60 80 100 120
Trace #

a) Spike
– p. 80/115

Time integration (cont’d): REM

0

0.2

0.4

0.6

0.8

T
im

e
[s

]

60 80 100 120
Trace #

b) 50 Hz
– p. 81/115

Time integration (cont’d): REM

0

0.2

0.4

0.6

0.8

T
im

e
[s

]

60 80 100 120
Trace #

c) 35 Hz
– p. 82/115

Time integration (cont’d): REM

0

0.2

0.4

0.6

0.8

T
im

e
[s

]

60 80 100 120
Trace #

d) 65 Hz
– p. 83/115

Time integration (cont’d): REM

1D test: comparison of FD against analytic solution (α = 0.2)
25 versus 250 dominant wavelengths

0.8 0.9 1.0 1.1 1.2 1.3

0

a) distance: 25 dominant λ

α = 0.2

9.8 9.9 10.0 10.1 10.2

0

α = 0.2

b) distance: 250 dominant λ

– p. 84/115

Time integration (cont’d): REM

1D test: comparison of FD against analytic solution (α = 0.05)
25 versus 250 dominant wavelengths

0.8 0.9 1.0 1.1 1.2 1.3

0

α = 0.05

9.8 9.9 10.0 10.1 10.2

0
α = 0.05

– p. 85/115

Time integration (cont’d): REM

1D test: comparison of REM against analytic solution
25 versus 250 dominant wavelengths

0.8 0.9 1.0 1.1 1.2 1.3

0

REM

time window: 0.8−1.3 s

9.8 9.9 10.0 10.1 10.2

0

REM

time window: 9.8−10.3 s

– p. 86/115

Implementation Details: Sources

Single force:

̺
∂2ui

∂t2
=

∂σij

∂xj
+ fi

where often is assumed separable:

f(x, t) = S(x) · h(t)

S(x) is a function of the position vector x

h(t) is the time history of the excitation function

Point force:
S(x) = S0 · δ(x− x0),

– p. 87/115

Implementation Details (cont’d): Sources

Explosive source:

f(x, t) =

(

∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)T

with scalar potential
Φ(x, t) = a(x) · h(t)

For the Fourier method and higher order FD methods a(x) must be
smooth, e.g. may have Gaussian shape:

a(x) = exp(−α(x − x0)
2)

– p. 88/115

Implementation Details (cont’d): Sources

Shear source:
f(x, t) = ∇× Ψ(x, t)

with the vector potential:

Ψ(x, t) = (ax, ay, az)
T · h(t)

In general explosive, shear and moment sources can be
implemented via altering components of the stress tensor.

Other types of sources can be combined by the obove mentioned
ones.

– p. 89/115

Implementation Details (cont’d): Sources

Vertical point force:

ur

uθ

– p. 90/115

Implementation Details (cont’d): Sources

Vertical point force:

0

0.2

0.4

50 100

Pressure t=300 ms

0

0.2

0.4

50 100

Shear t=300 ms

– p. 91/115

Implementation Details (cont’d): Sources

Vertical point force:
0

0.2

0.4

50 100

x-Displacement t=300 ms

0

0.2

0.4

50 100

z-Displacement t=300 ms

– p. 92/115

Implementation Details (cont’d): Sources

Double couple:

0

0.2

0.4

50 100

Pressure t=300 ms

0

0.2

0.4

50 100

Shear t=300 ms

– p. 93/115

Implementation Details: Response functions

Excursus:

0.15 0.20 0.25 0.30 0.35 0.40

1

2

3

Impuls Response

1

3D

2D

1D

a)

– p. 94/115

Implementation Details: Response functions

Excursus:

0.15 0.20 0.25 0.30 0.35 0.40

1

2

3

Convolved Impuls Response

3D

2D

1D

b)

– p. 95/115

Implementation Details: Absorbing boundaries

Periodicity of the Fourier method makes it difficult to implement
absorbing boundaries. Usually tapering is used in a stripe
surrounding the computational area.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

G
(i)

Gridpoint Index i

– p. 96/115

Free Surface

For realistic simulations the free surface of an elastic halfspace is
important, since surface waves are generated and guided there.

A clean implementation of the boundary conditions is essential to
obtain accurate numerical results.

Due to periodicity these boundary conditions cannot cleanly be
introduced to the Fourier method. An approximation can be
achieved by zero padding.

However, results are sufficiently accurate only if source and
receivers are far away from the free surface.

– p. 97/115

Free Surface (cont’d)

– p. 98/115

Free Surface (cont’d): Chebyshev method

A very accurate implementation of free surface boundary
conditions into spectral methods can be obtained when using the
Chebyshev method.

In the vertical direction Chebyshev derivative operators are used,
whereas the Fourier derivative is used in the horizontal directions.
The grid is equidistant in the horizontal directions but
non-equidistant in the vertical direction.

For the implementation of boundary conditions the elasto-dynamic
equations of motion are rewritten as the velocity-stress formulation.

– p. 99/115

Free Surface (cont’d): Chebyshev method

Unstretched and stretched Chebyshev grids:

x

z

x

z

– p. 100/115

Free Surface (cont’d): Chebyshev method

The 2D isotropic elastic equations of motion in Cartesian
co-ordinates reads:

̺üx =
∂σxx

∂x
+

∂σxz

∂z
+ fx

̺üz =
∂σxz

∂x
+

∂σzz

∂z
+ fz

Stress-strain relation:

σxx = (λ + 2µ) εxx + λ εzz

σzz = λ εxx + (λ + 2µ) εzz

σxz = 2µ εxz

Strains:

εxx =
∂ux

∂x

εzz =
∂uz

∂z

εxz =
1

2

(

∂ux

∂z
+

∂uz

∂x

)

– p. 101/115

Free Surface (cont’d): Chebyshev method

Velocity-stress formulation:

̺v̇x =
∂σxx

∂x
+

∂σxz

∂z
+ fx

̺v̇z =
∂σxz

∂x
+

∂σzz

∂z
+ fz

σ̇xx = (λ + 2µ)
∂vx

∂x
+ λ

∂vz

∂z

σ̇zz = λ
∂vx

∂x
+ (λ + 2µ)

∂vz

∂z

σ̇xz = µ

(

∂vz

∂x
+

∂vx

∂z

)

vi is the particle velocity u̇i.

– p. 102/115

Free Surface (cont’d): Chebyshev method

The velocity-stress equations can be rewritten in vector form:

∂W

∂t
= A

∂W

∂x
+ B

∂W

∂z

W contains particle velocities and stresses:

W = (vx, vz, σxx, σzz, σxz)
T

A and B are 5×5 matrices.

– p. 103/115

Free Surface (cont’d): Chebyshev method

Using ̺v2
s = µ and ̺v2

p = λ + 2µ:

A =

















0 0 ̺−1 0 0

0 0 0 0 ̺−1

̺v2
p 0 0 0 0

̺(v2
p − 2v2

s) 0 0 0 0

0 ̺v2
s 0 0 0

















and

B =

















0 0 0 0 ̺−1

0 0 0 ̺−1 0

0 ̺(v2
p − 2v2

s) 0 0 0

0 ̺v2
p 0 0 0

̺v2
s 0 0 0 0

















– p. 104/115

Free Surface (cont’d): Chebyshev method

Free surface boundary conditions:

σxz = 0 and σzz = 0

These boundary conditions need to be enforced, since they
are not automatically satisfied.

This requires also to change the remaining variables to maintain
a stable numerical scheme.

Q: How to change other variables?

A: Use of characteristic variables, which relate stresses
and particle velocities.

– p. 105/115

Free Surface (cont’d): Chebyshev method

One-dimensional analysis in vertical direction only:

∂W

∂t
= B

∂W

∂z

Diagonalizing the system to find the characteristic variables:

∂S

∂t
= Λ

∂S

∂z

With the diagonal matrix Λ:

Λ = Q−1BQ

the vector of the characteristic variables reads:

S = Q−1W

– p. 106/115

Free Surface (cont’d): Chebyshev method

So we need to calculate Q−1 or Q, respectively.
The eigenvectors of B form the columns of Q.

First we find the eigenvalues of B, i.e. solve

|B − λI| = 0

which leads to fifth order polynomial:

−λ5 + λ3
(

v2
p + v2

s

)

− λv2
pv

2
s = 0

We find: λ0 = 0, λ1 = ± vp and λ2 = ± vs

– p. 107/115

Free Surface (cont’d): Chebyshev method

Calculating the eigenvectors of B, i.e. solve

Bx = λx

we obtain:

x =

















1

0

0

0

±̺vs

















x =

















0

1

±̺(v2
p − 2v2

s)/vp

±̺vp

0

















x =

















0

0

1

0

0

















– p. 108/115

Free Surface (cont’d): Chebyshev method

From the eigenvectors:

Q =





































1 1 0 0 0

0 0 0 1 1

0 0 1
̺(v2

p−2v2

s)
vp

−̺(v2

p−2v2

s)
vp

0 0 0 ̺vp −̺vp

̺vs −̺vs 0 0 0





































– p. 109/115

Free Surface (cont’d): Chebyshev method

Its inverse is:

Q−1 =
1

2





































1 0 0 0 1
̺vs

1 0 0 0 −1
̺vs

0 0 2 4v2

s

v2
p
− 2 0

0 1 0 1
̺vp

0

0 1 0 −1
̺vp

0





































– p. 110/115

Free Surface (cont’d): Chebyshev method

We finally have the characteristic variables:

S = Q−1W =
1

2















































vx +
σxz

̺vs

vx − σxz

̺vs

2σxx − 2(1 − 2
v2
s

v2
p
)σzz

vz +
σzz

̺vp

vz −
σzz

̺vp















































– p. 111/115

Free Surface (cont’d): Chebyshev method

Quantities superscripted by N are obtained after applying
boundary conditions.For the numerical treatment of the boundary
conditions only outgoing, i.e. propagation towards the boundary,
characteristic variables are used.

At the free surface, because of σN
xz = 0 and σN

zz = 0, we obtain:

vN
x = vx +

σxz

̺vs

vN
z = vz +

σzz

̺vp

σN
xx = σxx − λ

(λ + 2µ)
σzz

– p. 112/115

Free Surface (cont’d): Chebyshev method

Thin layer over halfspace:

0

50

100

150

z

100 200 300 400
x

v_x Snapshot t = 800 ms

– p. 113/115

Free Surface (cont’d): Chebyshev method

0

0.5

1.0

1.5

T
im

e
[s

]

100 200 300 400
x

Time Section
– p. 114/115

Free Surface (cont’d): Chebyshev method

Transversely isotropic halfspace:

0

50

100

150

z

100 200 300 400
x

v_x Snapshot t = 800 ms

– p. 115/115

	 �egin {minipage}[c]{2.5cm} �egin {figure}[h] epsfxsize =2.35cm epsfbox {SPICE-logo.ps} end {figure} end {minipage} �egin {minipage}[c]{6cm} vskip 0.25cm Training Workshop end {minipage}
	Why pseudospectral modelling?
	Why pseudospectral modelling?
	Why pseudospectral modelling?

	Equation of motion
	Equation of motion
	Equation of motion
	Equation of motion

	Acoustic wave equations
	Acoustic wave equations
	Acoustic wave equations

	Numerical solution
	Numerical solution
	Numerical solution

	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)

	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)

	Numerical solution (cont'd)
	Numerical solution (cont'd)

	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)

	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)

	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)
	Numerical solution (cont'd)

	Numerical solution (cont'd)
	Numerical solution (Runge phenomenon)
	Numerical solution (Runge phenomenon)
	Numerical solution (cont'd)
	Fourier derivative
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Fourier derivative (cont'd)
	Fourier derivative (cont'd)

	Chebyshev derivative
	Chebyshev derivative
	Chebyshev derivative

	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)

	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)

	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)

	Chebyshev derivative (cont'd): b_k
	Chebyshev derivative (cont'd):
b_k
	Chebyshev derivative (cont'd):
b_k

	Chebyshev derivative (cont'd): b_k
	Chebyshev derivative (cont'd):
b_k
	Chebyshev derivative (cont'd):
b_k

	Chebyshev derivative (the physical space)
	Chebyshev derivative (the physical space)
	Chebyshev derivative (the physical space)
	Chebyshev derivative (the physical space)

	Chebyshev derivative (Shape functions)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)

	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)

	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (first cure)
	Chebyshev derivative (first cure)

	Chebyshev derivative (second cure)
	Chebyshev derivative (second cure)

	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)
	Chebyshev derivative (cont'd)

	Chebyshev derivative (cont'd)

	Accuracy
	Accuracy
	Accuracy
	Accuracy

	Accuracy (cont'd): $ d / d x $
	Accuracy (cont'd):
 $ d / d x $
	Accuracy (cont'd):
 $ d / d x $

	Accuracy (cont'd): $ d / d x $
	Accuracy (cont'd):
 $ d / d x $
	Accuracy (cont'd):
 $ d / d x $
	Accuracy (cont'd):
 $ d / d x $

	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)

	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)

	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)
	Accuracy (cont'd)

	Accuracy (cont'd): at final time {�ootnotesize (Fornberg, 1987)}
	Dispersion and stability
	Dispersion and stability
	Dispersion and stability

	Dispersion and stability: 1D FD
	Dispersion and stability: 1D FD
	Dispersion and stability: 1D FD

	Dispersion and stability (cont'd): 1D FD
	Dispersion and stability (cont'd):
1D FD

	Dispersion and stability (cont'd): 1D FD
	Dispersion and stability (cont'd):
1D FD
	Dispersion and stability (cont'd):
1D FD
	Dispersion and stability (cont'd):
1D FD

	Dispersion and stability (cont'd): 1D Fourier
	Dispersion and stability (cont'd):
1D Fourier
	Dispersion and stability (cont'd):
1D Fourier

	Dispersion and stability (cont'd): 1D Fourier
	Dispersion and stability (cont'd):
1D Fourier

	Dispersion and stability (cont'd):
1D dispersion
	Dispersion and stability (cont'd):
1D dispersion
	Dispersion and stability: 2D FD
	Dispersion and stability: 2D FD
	Dispersion and stability: 2D FD

	Dispersion and stability (cont'd): 2D FD
	Dispersion and stability (cont'd):
2D FD

	Dispersion and stability (cont'd): 2D Fourier
	Dispersion and stability (cont'd):
2D Fourier
	Dispersion and stability (cont'd):
2D Fourier

	Dispersion and stability (cont'd):
1D dispersion
	Dispersion and stability (cont'd):
1D dispersion
	Time integration
	Time integration

	Time integration (cont'd): FD
	Time integration (cont'd):
FD
	Time integration (cont'd):
FD

	Time integration (cont'd): Formal solution
	Time integration (cont'd):
Formal solution

	Time integration (cont'd): Formal solution
	Time integration (cont'd):
Formal solution
	Time integration (cont'd):
Formal solution

	Time integration (cont'd): Taylor expansion
	Time integration (cont'd):
Taylor expansion

	Time integration (cont'd): Taylor expansion
	Time integration (cont'd):
Taylor expansion
	Time integration (cont'd):
Taylor expansion

	Time integration (cont'd): Taylor expansion
	Time integration (cont'd):
Taylor expansion

	Time integration (cont'd): Chebyshev exp.
	Time integration (cont'd):
Chebyshev exp.

	Time integration (cont'd): Chebyshev exp.
	Time integration (cont'd):
Chebyshev exp.
	Time integration (cont'd):
Chebyshev exp.

	Time integration (cont'd): Tal-Ezer method
	Time integration (cont'd):
Tal-Ezer method
	Time integration (cont'd):
Tal-Ezer method

	Time integration (cont'd): Tal-Ezer method
	Time integration (cont'd):
Tal-Ezer method

	Time integration (cont'd): Tal-Ezer method
	Time integration (cont'd):
Tal-Ezer method
	Time integration (cont'd):
Tal-Ezer method

	Time integration (cont'd): REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM

	Time integration (cont'd): REM
	Time integration (cont'd):
REM

	Time integration (cont'd): REM
	Time integration (cont'd):
REM

	Time integration (cont'd): REM
	Time integration (cont'd):
REM

	Time integration (cont'd): REM
	Time integration (cont'd):
REM

	Time integration (cont'd): REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM

	Time integration (cont'd): REM
	Time integration (cont'd):
REM

	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Time integration (cont'd):
REM
	Implementation Details: Sources
	Implementation Details: Sources
	Implementation Details: Sources

	Implementation Details (cont'd): Sources
	Implementation Details (cont'd):
Sources

	Implementation Details (cont'd): Sources
	Implementation Details (cont'd):
Sources
	Implementation Details (cont'd):
Sources

	Implementation Details (cont'd):
Sources
	Implementation Details (cont'd):
Sources
	Implementation Details (cont'd):
Sources
	Implementation Details (cont'd):
Sources
	Implementation Details: Response functions
	Implementation Details: Response functions
	Implementation Details: Absorbing boundaries
	Implementation Details: Absorbing boundaries

	Free Surface
	Free Surface
	Free Surface
	Free Surface

	Free Surface (cont'd)
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd):
Chebyshev method

	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method
	Free Surface (cont'd): Chebyshev method

