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The Elastic System

Problem Geometry : Let consider an elastic medium Ω ⊂ Rnd,

Ω̄ = Ω ∪ Γ̄ ; Γ̄ = ¯Γi ∪ Γa with Γi = Γi
u ∪ Γi

T

Field Variables : Let x ∈ Ω and t ∈ I = [0, T ],

u(x, t) :Ω× I → Rnd ; v(x, t) :Ω× I → Rnd ; ρ(x) :Ω → R+

The Euler-Lagrange Equations (EL) : ∀(x, t) ∈ Ω× I;

ρü = div [σ(∇ u)] + f

with the initial conditions,

u(x, 0) = u0(x) and v(x, 0) = v0(x)
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Notation The symmetric Cauchy stress tensor is denoted by

σ : Ω× I → S with σ(x, t) := σijei ⊗ ej

The infinitesimal strain field is denoted by

ε [u] : Ω× I → S with ε [u]
.
= ∇s u =

1

2

[
∇ u + (∇ u)

T
]

where S ⊂ L (Rnd,Rnd) is the subspace of symmetric second-order
tensors of dimension d(d + 1)/2.

f : Ω× I → Rd is a generalized body force, i.e.,

f (x, t) = div[m(x, t)] ; with m(x, t) = mijei ⊗ ej

m(x, t) = m(t) δ(x− xs)

and {λi}i=1,3, are eigenvalues of m, i.e.,

λ1 6= 0 λ2 = λ3 mode I source

λ1 = −λ3 λ2 = 0 mode II source

λ1 = λ2 = λ3 explosive source

http:////www.ipgp.jussieu.fr
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Boundary conditions

Dirichlet boundary conditions

uΓ = ū or vΓ = v̄ on Γi
u × I

Neumann boundary conditions

σΓ · n = T̄ on Γi
T × I

Remark This conditions generates Rayleigh waves with celer-
ity cR given by(

2− c2R
c2S

)2

− 4

(
1− c2R

c2P

)1/2(
1− c2R

c2S

)1/2

= 0

Absorbing boundary conditions

σΓ · n = AΓ (uΓ,vΓ) on Γa × I

AΓ is a DtN-surface operator which is generally non local both
in space and time.

http:////www.ipgp.jussieu.fr
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Example Linearly Elastic Material
The stress response is characterized by a stored energy function
W : Ω× S → R such that

σ(x, t) =
∂W (x, ε)

∂ε
i.e., σij (x, t) =

∂W

∂εij

the linearized elasticity tensor is defined as

C(x, t) =
∂2W (x, t)

∂ε∂ε
i.e., Cijkl =

∂2W

∂εij∂εkl

which possesses major and minor symmetries

Cijkl = Cklij = Cijlk = Cjikl

which leads to 6 coefficients for nd = 2 and 21 for nd = 3.
For infinitesimal theory, C is positive definite restricted
to S,

ζ : C : ζ = ζijCijklζkl ≥ α(x)|ζ|2 ∀ζ ∈ S and α > 0

Therefore W is a convex function of ε. This implies the so-
called Hadamard condition for real wave celerities.

http:////www.ipgp.jussieu.fr
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Remark For the infinitesimal theory,

W =
1

2
ε : C : ε =

1

2
∇ u : C : ∇ u

and for a free stress initial state, the stress perturbation is

σ = C : ε = C : ∇ u i.e., σij = Cijklεkl = Cijkl

∂uk

∂xl

Remark When W is rotationally invariant, and for a linearly
isotropic elastic material

C = λ1⊗1 + 2µ I = κ1⊗1 + 2µ

[
I − 1

3
I ⊗ I

]
where λ, µ are the Lamé parameters and κ = λ + 2

3µ and

1 = δijei ⊗ ej and I =
1

2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

with two real wave celerities : the P-wave and S-wave celerities

cP =

√
λ + µ

ρ
; cS =

√
µ

ρ
with cP =

√
2

3ν
cS ≥

√
4

3
cS

http:////www.ipgp.jussieu.fr
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Note Lagrangian dynamics

The associated continuous Lagrangian system is defined by

L (u(·, t),v(·, t), t) := I [v]− V [u, t]

where I and V = V int − Vext denotes the kinetic energy and
the potential energy of the body, i.e.,

I [v(·, t)] =

∫
Ω

1

2
ρ0v · v dV

V int [u(·, t), t] =

∫
Ω
W (∇ u,x) dV =

∫
Ω

1

2
ε : C : ε dV

Vext [t] =

∫
Ω

f (t) · u dV +

∫
Γi

T

T (t) · u dΓ

Considering the motion of the body during the time interval I, the
action function is obtained by integration along a curve u(·, t),

S [u(·, ·)] =

∫
I
L (u(·, t),v(·, t), t) dt

http:////www.ipgp.jussieu.fr
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Note Hamilton principle
Hamilton’s principle postulates that among all the admissible tra-
jectories, i.e., satisfying the essential boundary condition on Γi

u,
the solution is the one that extremize the action function while
holding the endpoints of the cure u(·, t) fixed,

δS [u(·, ·)] = δ

∫
I
I − V dt =

∫
I

[
∂I
∂v
δv − δV

]
dt

=

∫
I

[
− d

dt

(
∂I
∂v

)
δu− δV

]
dt +

[
∂I
∂v
δu

]Tf

0

with

δV =

∫
Ω

[
∂W

∂ε
: ∇ δu− f (t) · δu

]
dV −

∫
Γint

T

T (t) · δu dx

Leading to∫
Ω
ρü · δu = −

∫
Ω

[σ : ∇ δu + f (t) · δu] dV +

∫
Γint

T

T · δu dV

Remark The Neumann boundary conditions are natural
conditions.
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Definition Functional spaces

At that stage, we introduce the spaces of admissible displacement
and admissible displacement variation,

Su =
{
u(x, t) :Ω× I → Rd | u(·, t) ∈ H1(Ω)d ; u = ū on Γint

u

}
δS =

{
w(x, t) :Ω× I → Rd | w(·, t) ∈ H1(Ω)d ; w = 0 on Γint

u

}
Where

H1 (Ω) =

{
u ∈ L2 (Ω) such that ,

∂u

∂xj

∈ L2 (Ω)

}
and L2 (Ω) is the space of square integrable functions over Ω.
Finally let denote the scalar product on L2 (Ω)

nd,

(u,w) =

∫
Ω

u ·w dV

http:////www.ipgp.jussieu.fr
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Problem The Initial Boundary Value Problem (IBVP)

For all w ∈ δS and t ∈ I, find (u,v) ∈ Su × Sv, such that

(w, ρv̇) = −A (w,u) + (w,f ) + 〈w,T 〉Γint
T

(w, u̇) = (w,v)

with the initial conditions

(w,u(·, 0)) = (w,u0) and (w,v(·, 0)) = (w,v0)

where f ∈ L2(Ω)d and ρ ∈ L2(Ω) and

A (w,u) =

∫
Ω

∇ w : σ(u) dΩ =

∫
Ω

∇ w : C : ∇ u dΩ

http:////www.ipgp.jussieu.fr
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Geometrical Discretization

Like in FEM, the domain Ω̄ is approximated by a decomposition into
ne non-overlapping subdomains,e.g., elements,

Ω̄ ≈ Ω̄
h

=

ne⋃
e=1

Ω̄e and Ωe ∩Ωe′ = φ if e 6= e′

This define a quadriangulation Ih of Ω̄. For classical SEM, each
actual subdomain Ωe ∈ Ih(Ω̄) is an arbitrary convex quadri-

lateral.

http:////www.ipgp.jussieu.fr
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Geometric Mapping

Each subdomain Ω̄e ∈ Ih(Ω̄) is obtained as the image of a reference

element � = [−1, 1]
d

using a smooth locally compatible and

invertible mapping Fe : � → Ω̄e.

F e : ∀ξ ∈ � → x = F e(ξ) ∈ Ωe

F e−1 :∀x ∈ Ωe → ξ = F e−1(x) ∈ �

http:////www.ipgp.jussieu.fr
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Note Parametric transformation

ξ

η

Let ξ = (ξ1, · · · , ξnd
), the normalized Cartesian coordinate sys-

tems associated with the reference domain � = [−1,+1]
2
, and

consider a subdomain Ωe with a geometry prescribed by a set of
nodes on the boundary x̃a = x̃(ξa).

x : � → Ω̄e ; x(ξ) =

ng∑
a=1

N a(ξ)x̃a

This interpolation functions needs to satisfy,

1. Interpolation property : N a(ξb) = δab

2. Constant sum property :
∑

a N a(ξ) = 1

3. Conservation property :
∑

a
∂N
∂ξk

= 0

http:////www.ipgp.jussieu.fr
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Note 2D-Subparametric transformation
In 2D the geometrical nodes in the parent domain � are either
vertex or edge nodes.

Example Bilinear geometrical interpolation
When only vertex nodes are considered, a simple interpolation
based on tensorized 1D Lagrangian interpolation is used,

Vertex nodes : Na(ξ1, ξ2) =
1

4
(1 + ξ1ξ1,a) (1 + ξ2ξ2,a) a ∈ [1, 4]

Example Quadratic Interpolation
Geometrical nodes are now vertex and midside nodes on each
edge,

Vertex nodes Na(ξ1, ξ2) =
1

4
(1 + ξ1ξ1,a) (1 + ξ2ξ2,a) a ∈ [1, 4]

Midside nodes Na(ξ1, ξ2) =
1

2

(
1− ξ2

1

)
(1 + ξ2ξ2,a) a = 5, 7

Na(ξ1, ξ2) =
1

2
(1 + ξ1ξ1,a)

(
1− ξ2

2

)
a = 6, 8

One can also alternatively use a blending technique derived from
Gordon and Hall.
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Definition Jacobian of the geometrical transformation

ξ

η

Associated with the geometric transformation Fe, one can define
the Jacobian and the inverse metrics,

∂x

∂ξ
= F e(ξ) =

(
∂x1(ξ)

∂ξ1

∂x1(ξ)
∂ξ2

∂x2(ξ)
∂ξ1

∂x2(ξ)
∂ξ2

)
and

∂ξ

∂x
= F 1e(ξ) =

(
∂ξ1(x)
∂x1

∂ξ1(x)
∂x2

∂ξ2(x)
∂x1

∂ξ2(x)
∂x2

)
as well the determinant J e(ξ) of F e with

dVx = J e dvξ

http:////www.ipgp.jussieu.fr
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Problem The Initial Boundary Value Problem revisited

Associated with the domain decomposition Ω̄
h

=
⋃ne

e=1 Ω̄e, it is
easy to note, noting ue = u|Ω̄e

, that for example

(w, ρv̇) =

ne∑
e=1

(we, ρev̇e) |Ωe
; A (w,u) =

ne∑
e=1

Ae (we,ue)

(we, ρev̇e) |Ωe
=

∫
�

we · ρev̇e J edvξ

Ae (we,ue) =

∫
Ω̄e

[∇ we : C : ∇ ue] dV

=

∫
�

[
∇ξ weF e−1 : C : F e−T ∇ξ ueT

]
J edvξ

Remark At that stage, it should be noted that

• Computation at element level → seek for piecewise
polynomial approximation with strong orthogonality.

• Inner products = element integral computation
→ require efficient and accurate numerical integration

http:////www.ipgp.jussieu.fr
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Functional Discretization

Associated with the domain decomposition Ih, consider a piece-

wise polynomial approximation of the admissible displacement
u and of the admissible variations w fields.
Finite-dimensional subspaces Sh

u ⊂ Su and δSh ⊂ S are :

Sh
u =

{
uh ∈ Su and uh|Ω̄e

◦Fe ∈ span ⊗d
i=1 [PN(ξi)]

}
δVh =

{
wh ∈ δV and wh|Ω̄e

◦Fe ∈ span ⊗d
i=1 [PN(ξi)]

}
PN(ξi) : the space of polynomials of degree less or equal to N .

Remark If {pk}N
k=0 is the base of PN on [−1, 1], the tensorized

base on � = [−1, 1]2 is {pk, pl}N
k,l=0. For each Ω̄e, weh is decom-

posed as

PNweh =

N∑
k,l

ûeh
kl pk(ξ1) pl(ξ2)

with [ŵeh
00 , ŵ

eh
10 , · · · , ŵeh

kl , · · · , ŵeh
NN ]

T
the components of weh.

http:////www.ipgp.jussieu.fr


Elastic system

Geometrical . . .

Functional . . .

Time discretization

Home Page

Title Page

JJ II

J I

Page 19 of 65

Go Back

Full Screen

Close

Quit

Interpolation and Quadrature

Remark Polynomes are good for you ....!

• Problems are not all periodics. Polynomial approximations are
good approximations provided smoothness conditions. Piece-
wise polynomial approximations and C0 continuity be-
tween elements : insured with Lagrangian interpolation.

• Orthogonality related to topology, e.g. local suport, and an-

alytical nature of the basis functions. Not all polynomial
approximations exhibit spectral accuracy, e.g., coefficients
of expansion decay faster than algebraically in k.

Remark Numerical quadratures

• Inner products over � must be fast and accurate. Both end
points (±1) must be included in the quadrature knots. There is
one and only one numerical quadrature method that use
N + 1 points, including (±1) on [−1, 1] and which integrate
exactly polynomes of degre N + 1,i.e, ∀φ ∈ P2N−1 :∫ 1

−1
φdξ =

N∑
i=0

φ(ξi)ρi, ξ0 = −1 < ξ1 < · · · < ξN = 1 ρi > 0

The Gauss-Lobatto-Jacobi method.

http:////www.ipgp.jussieu.fr
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Note Gauss-Lobatto-Legendre Quadratures

Let ΞN+1 := {−1 = ξ0 < · · · < ξN = 1}, denote N+1 quadrature
nodes, generated as the solution of (1− x2) d

dx
LN(x) = 0, then∫ 1

−1
φ(ξ) dxi =

N∑
k=0

ωkφ(ξk) ∀φ(ξ) ∈ P2N−1

with ωk = 2
N(N+1)

1
(LN (ξk))

2 > 0

Remark Locations of the zeros of L′N can be estimated

−1 ≤ − cos

(
k − 1/2

N − 1/2

)
≤ ξk ≤ − cos

(
k

N − 1/2

)
≤ 1

The zeros of L′N tend to accumulate at the end points of Λ, a
cosine expansion show that the node spacing ∝ 1/N 2 near the end
points and ∝ N in the middle.

Remark The inner products can be approximated as

(w, u)N :=

N∑
k=0

ωkw(ξk)u(ξk) = (w, u)L2(Λ) ;∀u(x), w(x) ∈ PN−1

http:////www.ipgp.jussieu.fr
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ξ

η

Remark In the reference domain � = [−1, 1]nd, the quadrature
is the tensor product of the 1D-GLL quadrature, defining a grid
⊗nd

i=1 Ξi
N+1 of quadrature nodes.

http:////www.ipgp.jussieu.fr


Elastic system

Geometrical . . .

Functional . . .

Time discretization

Home Page

Title Page

JJ II

J I

Page 22 of 65

Go Back

Full Screen

Close

Quit

Note Discrete interpolation

INu the Lagrange interpolation polynomial of u at N + 1 GLL
nodes,

INu(ξ) =

N∑
j=0

u(ξj)ψj(ξ) with ψj(ξ) = δij

with Legendre polynomials

ψj(ξ) = − N

N(N + 1)

(1− ξ2)L′N(ξ)

(ξ − ξj)LN(ξj)

Note that (u, v)N = (INu, v)N ,∀v ∈ L2(Λ)

In SEM, PN(ξi) is chosen as the space of Lagrange polynomials of
degree less or equal toN associated with the (N+1) Gauss-Lobatto-
Legendre (GLL) quadrature nodes ΞN+1 := {ξ0, ξ1, · · · , ξN} ∈
[−1, 1].

http:////www.ipgp.jussieu.fr
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Note Discrete element interpolation

In each Ω̄e ∈ Ih(Ω̄), the tensor-product polynomial approxima-
tion :

uh
i (x)|Ωe

= uhe
i ◦ F e (ξ) =

N∑
r,s=0

uhe
i|rs h

N
r (ξ1)h

N
s (ξ2),

Useful vector representations are denoted

ueh
i :=

(
ueh

i|1, · · · , ueh
i|l̂ , · · · , u

eh
i|N

)T

:=
(
ueh

i|00, u
eh
i|10, · · · , ueh

i|rs, · · · , ueh
i|NN

)T
ueh :=

(
ueh

1 , u
eh
2 , u

eh
3

)T
U h

L :=
(
u1h,u2h, · · · ,uneh

)T
N = (N + 1)2 : total number of basis coefficients in an element,

l̂ = 1 + r + (N + 1) s

http:////www.ipgp.jussieu.fr
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Note Global and Local numbering

The construction of Sh
u and δVh, is

achieved by piecing together the lo-
cal polynomial interpolants and en-
forcing C0-continuity of ueh across
the elements.

Due to the Lagrangian basis, this simply achieved by equating co-
incident nodal values, e.g.

xij = xi′j′ → ueh
l (xij) = ue′h

l (xi′j′)

If N̄ is the number of distinct nodes of Ih, and U h ∈ RN̄d,the
vector form associated with the global numbering. Continuity con-
dition insures the existence of a Boolean connectivity matrix Q
that maps U h → U h

L, i.e.,

U h
L = QU h.

http:////www.ipgp.jussieu.fr


Elastic system

Geometrical . . .

Functional . . .

Time discretization

Home Page

Title Page

JJ II

J I

Page 27 of 65

Go Back

Full Screen

Close

Quit

Note Approximate evaluation of Derivatives
The ξi-derivative of ueh at GLL-points (ξr, ξs),

ueh
i,ξ1

(ξr, ξs) =
∂ueh

i

∂ξ1
(ξr, ξs) =

N∑
a,b=0

ueh
i|ab

dhN
a

dξ
(ξr)h

N
b (ξs)

=

N∑
a=0

ueh
i|as

dhN
a

dξ
(ξr) =

N∑
a=0

DN
rau

eh
i|as

DN the 1-D (N +1)2 derivative matrix associated with the N +1
GLL points

DN
ij :=

dhN
j

dξ
(ξi) =



LN (ξi)
LN (ξj)

1
ξi−ξj

for i 6= j,

−(N+1)N
4 if i = j = 0,

(N+1)N
4 if i = j = N,

0 otherwise.

and in vector form

ueh
i,ξj

= Dju
eh
i with D1 := IN+1 ⊗ DN ; D2 := DN ⊗ IN+1

IN+1 is (N + 1)2 identity matrix and ⊗ the tensor product.
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Remark Analogously, the gradient operator in the physical do-
main is

ueh
i,j :=

∂ueh
i

∂xj

=

d∑
p=1

∂ueh
i

∂ξp

F−1e
pj =

d∑
p=1

Dpu
eh
i F

−1e
pj

= uehT
i

d∑
p=1

DT
pF

−1e
pj = uehT

i D̃
T

j = D̃ju
eh
i

where F−1e
pj = ∂ξp/∂xj is the (pj) component of the the Jacobian

associated with F−1e.
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A digest of the space discretization

ξ

η

. Discretization into ne non-overlapping elements :
Ω̄ = ∪ne

e=1Ω̄e

. mapped to a reference unit element, � = Λd, Λ = [−1, 1] :

Fe : � → Ω̄e ; ∀x ∈ Ω̄e : x(ξ) = Fe(ξ)

Gauss-Lobatto-Legendre Quadrature

. Gauss-Lobatto-Legendre (GLL) defined as roots of (1− ξ2)L′
N (ξ) ;

. provides (N + 1) points that integrate excatly polynomial of order ≤ (2N − 1)

. defines on � a non uniform grid ΞN

. polynomial approximation wh
e chose as the Lagrange approximation on the grid

ΞN

. unique polynomial of [PN(Λ)]d which coincides with we at the N +1-GLL points.
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Semi-discrete Problem

Inserting polynomial interpolations into the variational formulation,
leads to a coupled system of ordinary differential equations,
governing the evolution at the global nodal positions,

MV̇
h

= Fext − Fint
(
U h
)

U̇
h

= V h

where M is the
(
d · N̄

)
×
(
d · N̄

)
mass matrix.

Fext and Fint (U ) denote the vectors containing the external and
internal forces respectively at the global nodes.
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Note Assembled Matrices and Forces

The global matrices and vector forces are assembled, i.e.,

M = Ane

e=1 {Me} ; Fext = Ane

e=1

{
F ext,e

}
; Fint = Ane

e=1

{
F int,e

}
where Ane

e=1 is the classical assembling operation, the action of
which is the summation of the entries of coincident nodal values.
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Note Element Matrices
The element matrices and vector-forces are given by

Me = Id ⊗ M̂
e

F e,ext =
(
F e,ext

1 , · · · , F e,ext
d

)T
F e,int =

(
F e,int

1 , · · · , F e,int
d

)T
Id is the d× d-identity matrix; M̂

e
, a N ×N matrix and F e,ext

i

and F e,int
i , N -vectors. and making use of the GLL-quadrature

with αβ ∈ ⊗nd=2
i=1 Ξi

N+1

M̂
e

k̂k̂ = ρ (ξα, ξβ) J
e (ξα, ξβ)ωαβ, k̂ := 1 + α + (N + 1)β

F ext,e
i =

{
f ext,e

i
J eω

D̃
T

j m
e
ijJ

eω

with J e
k̂

= J e(ξα, ξβ) and ωk̂ = ωαβ.
The mass matrix is therefore intrinsically diagonal, a most
useful property in time-stepping schemes for elastodynamics where
frequent application of M−1 is required.
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Note Internal Forces After similar but more cumbersome ma-
nipulations, the discrete internal forces can be written as

F int,e
i =

d∑
l=1

d∑
p,q=1

DT
p Ge

iplqDqu
eh
l

where Ge
iplq is a block diagonal matrix with

{
Ge

iplq

}
k̂k̂

=

[
d∑

j,m=1

F−1e
pj CijlmF

−1e
qm

]
(ξα,ξβ)

J e(ξα, ξβ)ωαβ

Remark The total number of operations in 3D is only ∝ (N+1)4

thanks to the sum-factorization, and the leading order of storage
is ∝ (N + 1)3.
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Note Alternative Formulation

F int,e
i =

d∑
j=1

D̃
T

j

d∑
l,m=1

Ce
ijlm D̃mu

eh
l J

eω

=

d∑
j=1

D̃
T

j Σeh
ij J

eω

where

Σeh
ij :=

(
Σeh

ij|1, · · · ,Σeh
ij|l̂, · · · ,Σ

eh
ij|N

)T

Σeh
ij =

d∑
l,m=1

Ce
ijlm D̃mu

eh
l = Ke

iju
e → Σeh = Keueh

where Ke
ij is a block-diagonal matrix

{
Ke

ij

}
k̂k̂

= span ⊗d
k=1

{
d∑

m=1

Cijkm D̃m

}
⊗ êk

with êk the canonical vectors.
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Note A velocity-Stress semi-discrete system

This allows to rewrite the discrete dynamical system, taking into
account the velocity continuity, e.g. V L = QV as

MV̇
h

= Fext(t)− Fint
(
Σh

L

{
U h

L

})
Σ̇

h

L = KL QV h

where Σh
L =

{
Σ1,h, · · · ,Σne,h

}T

http:////www.ipgp.jussieu.fr
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Time discretization

The discrete dynamical system obtained after the space discretization
is,

MV̇
h

= Fext − Fint
(
U h
)

U̇
h

= V h

where M is the
(
d · N̄

)
×
(
d · N̄

)
diagonal mass matrix.

Fext and Fint
(
q
)

denote the
(
d · N̄

)
vectors of external and internal

forces respectively at the global nodes.

Notation Let denote now q = U h, q̇ = V h, the
(
d · N̄

)
vector

of nodal displacement and nodal velocities,

http:////www.ipgp.jussieu.fr
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Newmark Scheme

The Newmark family of integrators originally given in Newmark
(1959), is usually written for a given time discretization tn = n∆t
as maps (q

n
, q̇

n
) → (q

n+1
, q̇

n+1
) by enforcing the semi-discrete mo-

mentum equations at time tn+1 ; i.e

a(q
n+1

) = M−1
(
Fext(tn+1)− Fint(q

n+1
))
)

q
n+1

= q
n

+ ∆tq̇
n

+ ∆t2
[(

1

2
− β

)
a(q

n
) + βa(q

n+1
)

]
q̇

n+1
= q̇

n
+ ∆t

[
(1− γ) a(q

n
) + αa(q

n+1
)
]

where γ ∈ [0, 1] and β ∈
[
0, 1

2

]
specify the method.
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Note More on the Newmark scheme

. second-order accurate if and only if γ = 1/2 ; explicit when
making β = 0 ;

. schemes with γ = 1/2 are variational and exact conserva-
tion of total angularmomentum for β/γ = 1/2 (symplectic
scheme) ;

. Courant number requires :

∆t ≤ ∆tC = C
hmin

cmax

∆tC ∝ O(n1/d
e N−2)

. Minimal dispersion requires a certain number of points per
dominant wavelength nmax per dominant wavelength which
scales with cmin : hdisp ∝ λdom/nmax with nmax ≈ 5− 8

http:////www.ipgp.jussieu.fr
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Mid-Point scheme

An alternative time-stepping is provided by the generalized mid-point
scheme obtained by enforcing the semi-discrete momentum equations
at time tn+α with α ∈ [0, 1], i.e.

q̇
n+1

= q̇
n

+ ∆tM−1
[
{(1− α)Fext(tn) + αFext(tn+1)} − Fint(q

n+α
)
]

q
n+1

= q
n

+
∆t

2

(
q̇

n
+ q̇

n+1
)
)

where q
n+α

= (1 + α)q
n

+ αq
n+1

Remark This define a second-order scheme which has also the
strong property of being a simplectic scheme that conserves the
total linear and angular momentum (for equilibrated loading).
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Parallelisation and Implementation

A u3 3 A u44

A u2 2A 1 u1

u3 u4

u2u1

(a) (b) (c)

(f)(e)(d)

. Efficient parallel implementation on distributed memory architec-
tures.

. Sum-factorization techniques using the tensorial structure of
SEM.
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Alternative Mid-point scheme

An alternative mid-point time-stepping can be derived from the
velocity-stress discrete dynamical system,

q̇
n+1

= q̇
n

+ ∆tM−1
[
{(1− α)Fext(tn) + αFext(tn+1)} − Fint(Σn+α)

]
Σn+1 = Σn + ∆tKLQq̇

n+1/2

where q̇
n+α

= (1 + α)q̇
n

+ αq̇
n+1

Remark Such a system can be show to be equivalent in a discrete
sense to a mixed velocity-stress formulation when approximating
the stress field in L2. Such a formulation allow straightforward
implementation of PML.
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The PML in SEM

Efficient absorbing boundary requires

. a limited zone, within no large
increase of computation and
storage

. no impedence constrast at the
interface with the elastic bulk

. an exponential decay of propa-
gating fields

Absorbing

L
ay

er
s

Perfectly matched layer (PML)
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Remark PML implementation
Analytic continuation in the complex space. For Cartesian coor-
dinates, the continuation is achieved by

x̃i =

∫ xi

0
si (ζ, ω) dζ

where ω is the frequency. Simple expression of s

si = 1 + i
αi (xi)

ω

A plane wave ei(ωt−k·x) decreases inside the PML, in the xi direc-

tion, by the factor e−
ki
ω

∫
αi(ζ)dζ and is independent of the frequency.

The mapping induces a metric change G̃ = ΛId Λ where Id is the
unit metric and

Λ =

 s1 0 0
0 s2 0
0 0 s3

 and ∇̃ = Λ−1 ∇

http:////www.ipgp.jussieu.fr
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Remark PML implementation

To be efficient in the time domain it requires a first-order equation
(velocity-stress formulation).
Components are splitted along the directions of derivatives normal
and parallel to the interface between PMLs and bulk (unphysical!)

ρ(v̇
(m)
i + dmv

(m)
i ) =

∂σij

∂xj

δjm

σ̇
(m)
ij + dmσ

(m)
ij = cijkl

∂vl

∂xk

δkm

vi =

3∑
m=1

v
(m)
i ; σij =

3∑
m=1

σ
(m)
ij
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Fracture Dynamics
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Energy-Momentum conservation

0

1e+9

2e+9

3e+9

4e+9

5e+9

6e+9

0 20 40 60 80 100 120 140

E
ne

rg
y 

(J
)

Time (s)

Total Energy
Potential Energy

. Kinetic and potential energies :

Uk =
1

2
vTMv

Up =
1

2

∫
Ω
∇uh : c :∇uh dV

. The domain : 1600× 1600m with
484 spectral elements. cL =
3200m.s−1 and cT = 184.5m.s−1

and ρ = 2200kg.cm−3. fc = 15Hz

. Time step ∆t = 1.5ms and 105

time steps.

. total energy constant while ki-
netic and potential energies are
exhanging.
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Semi-Circular Canyon

-1 1
R71

Rayleigh wave
R1

1 -1 1
R71R

Rayleigh wave

Converted P wave

. Model : cL = 2000m.s−1,
cT = 1000m.s−1, ρ = 1000kg.m−3

;
radius of the canyon r = 1000m.

. Incident Rayleigh wave for an
elastic half space : snapshots at
t = 3s and t = 6s.

. Horizontal component of the in-
cident Rayleigh wave :
Ricker with fdom = 1Hz.

. Mesh : 1960 elements, with N =
5, number of nodes 49596. Prop-
agation for 8s with ∆t = 1.25ms.

. 71 receivers at the free surface
x ∈ [−3km, 3km]

. Diffraction pattern when the
wave hits the canyon.
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Surface Topography

S

R1 R100

. Topography from the Peruvian
Andes (courtesy TotalElf).

. Elastic half-space : cp =
3200m.s−1, cs = 1848m.ss−1, ρ =
2200kg.m−3.

. Explosive source near the free sur-
face,
fc = 12Hz.

. Width of the model 5500m, mean
height of the topography 1300m.

. 60× 12 elements, 46, 657 points.

. 5000 time steps and ∆t = 0.30ms

. Strong diffracted phases and con-
version from Rayleigh to body
waves
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Surface Topography

0

0.5

1.0

1.5

2.0

Ti
m

e 
(s

)

0 500 1000 1500 2000 2500
x (m)

Ux component

a

b
c

d

e

0

0.5

1.0

1.5

2.0

Ti
m

e 
(s

)

0 500 1000 1500 2000 2500
x (m)

Uz component

a

b
c

d
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3D-Topography

1000

1100

1200

1300

400 800 1200 1600

Major axis

1000

1100

1200

1300

400 800 1200 1600

Minor axis

. Bi-variate Gaussian topography : hmax = 180m, σx = 250m,
σy = 125m

. Incident vertical S-wave, λs = h and fc = 10.2Hz, polarized
along the minor axis.
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3D Topography : Transfer function
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Reference Earth Models

                                                                                

Cubed Sphere                                                                    
                                                                                
RHO                              from  2600.0000 to  5566.4556                  

0 5 10 15
0

2

4

6

ra
yo

n 
(1

0^
6 

m
)

densite
Vp
Vs

0 5 10
5.80

6.05

6.30

Vitesse (km/s), densite (1e3 kg/m3)

PREM

SAW12D model
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Validation dans PREM
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Note Orthogonal polynomials Λ̄ = [−1, 1] and Λ =]− 1, 1[.
The sequence of polynomial functions {pk}∞k=0, where pk is of de-
gree k, is a system of orthogonal polynomials with respect to
the weight w(ξ) > 0,∀ξ ∈ Λ if,

(pk, pl)L2
w(Λ) :=

∫ 1

−1
w(ξ)pk(ξ) pl(ξ) dξ = γkδ − kl

where pk = ‖pk‖2
L2

w(Λ) depends on the polynomial degree.

Remark if {pk}∞k=0 is a family of orthogonal polynomials in Λ̄
with respect to the weight function w, then the zeros of the

polynomial pk are real, simple and located in Λ.

Remark For a family of orthogonal polynomials {pk}∞k=0 with
respect to the weight function w, we have the three-terms recursion
relation :

pk+1(x) = (ak + bkx)pk(x)− ckpk−1(x)

with ak,bk and ck coefficients depending on the degree k and on
the family of orthogonal polynomials.
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Note Sturm-Liouville problem and spectral accuracy
A regular Sturm-Liouville Problem is an eigenvalue problem of
the form :

− d

dx

[
p(x)

du

dx
(x)

]
+ q(x)u(x) = λ(x)w(x)u(x)

where w(x) is non negative integrable weight function, and p(x)
and q(x) real valued functions. p(x) is a continuous, non negative
and bounded function over Λ, and continuous at both end (±1),
wheras q(x) is continuous, non negative and bounded in Λ.
If p vanishes at one boundary at least, the Sturm-

Liouville problem is singular.

Remark Gotlieb and Orzag have shown that if u is expanded

in a series of eigensolutions of a singular Sturm-

Liouville problem, then the coefficients of the expansion decay
faster than algebraically in k. This is the spectral accuracy
property.
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Note Jacobi polynomials
The only polynomial eigenvalue of a singular Sturm-

Liouville problem are the Jacobi polynomials P (α,β)
n (x)

with α, β > −1.
They are solutions of

− d

dx

[
(1− x2)w(α,β) d

dx
P (α,β)

n (x)

]
= λ(α,β)

n P (α,β)
n (x)

with w(α,β) = (1− x)α(1 + x)β and λ(α,β)
n = n(n + α + β + 1).

Remark They satisfy the Rodrigue’s formula

P (α,β)
n (x) =

(−1)n

2nn!
(1−x)−α(1+x)−β) d

n

dxn

[
(1− x)n+α(1 + x)n+β

]
• (α = β = 0) −→ Legendre polynomials : Lk(x)

• (α = β = 1/2) −→ Chebyshev polynomials : Tk(x)

• (α = β = −1/2) −→ Chebyshev polynomials : Uk(x)
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Note Legendre polynomials
Solutions, with w = 1 and (α, β = 0), of

− d

dx

[
(1− x2)

d

dx
Lk(x)

]
= k(k + 1)Lk(x)

The family of Legendre polynomials is an orthogonal family

(Lk(ξ), Ll(ξ))L2(Λ) =

∫ 1

−1
Lk(ξ)Ll(ξ) dξ = γkδkl

Remark In contrast with Chebyshev polynomials, no compact

analytical expression exist for Lk(x). Best computed with a
three-term recursion relationship,

L0(x) = 1 and L1(x) = x

(k + 1)Lk+1(x) = (2k + 1)xLk(x)− k Lk−1(x)

Finally, the important relationship obtained by Maday and
Bernardi,

(2k + 1)lk(x) = L′k+1(x)− L′k−1(x)
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Note Gauss-Lobatto-Legendre Quadratures

Let ΞN+1 := {−1 = ξ0 < · · · < ξN = 1}, denote N+1 quadrature
nodes, generated as the solution of (1− x2) d

dx
LN(x) = 0, then∫ 1

−1
φ(ξ) dxi =

N∑
k=0

ωkφ(ξk) ∀φ(ξ) ∈ P2N−1

with ωk = 2
N(N+1)

1
(LN (ξk))

2 > 0

Remark Locations of the zeros of L′N can be estimated

−1 ≤ − cos

(
k − 1/2

N − 1/2

)
≤ ξk ≤ − cos

(
k

N − 1/2

)
≤ 1

The zeros of L′N tend to accumulate at the end points of Λ, a
cosine expansion show that the node spacing ∝ 1/N 2 near the end
points and ∝ N in the middle.

Remark The inner products can be approximated as

(w, u)N :=

N∑
k=0

ωkw(ξk)u(ξk) = (w, u)L2(Λ) ;∀u(x), w(x) ∈ P2N−1
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ξ

η

Remark In the reference domain � = [−1, 1]nd, the quadrature
is the tensor product of the 1D-GLL quadrature, defining a grid
⊗nd

i=1 Ξi
N+1 of quadrature nodes.
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Note Spectral approximation

Consider the family of orthogonal Legendre polynomials Lk
∞
k=0 as

a basis of L2(Λ), then

u(ξ) :=

∞∑
k=0

ûkLk(ξ) ûk =
2k + 1

2

∫ 1

−1
u(x)Lk(ξ) dξ ∀u ∈ L2(Λ)

Let PNu be the formal series truncated at degree N

PNu(ξ) =

N∑
k=0

ûkLk(ξ) with lim
N→∞

‖u− PNu‖L2(Λ)= 0
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Note Discrete Spectral Transforms and interpolation
INu the Lagrange interpolation of u at N + 1 GLL nodes

INu(ξ) :=

N∑
k=0

ũkLk(ξ) with (Inu)(ξk) = u(ξk) ∀ξk ∈ ΞN+1

Noting that (u, v)N = (INu, v)N ,∀v ∈ L2(Λ), then

ũk =
1

γ
(N)
k

N∑
j=0

ωju(ξj)Lk(ξj) and INu(ξ) =

N∑
j=0

u(ξj)ψj(ξ)

with

ψ(ξj) := ωj

N∑
l=0

1

γ
(N)
l

Ll(ξj)Ll(ξ) with ψj(ξk) = δjk

For Legendre polynomials

ψj(ξ) = − N

N(N + 1)

(1− ξ2)L′N(ξ)

(ξ − ξj)LN(ξj)

INu(ξ) = PNu(ξ) +RNu(ξ) with RNu the aliasing error.
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