The mushy seafloor problem: observations and questions

T. Dahm, SPICE workshop Smolenice September 2005

Contributions from:

Martin Thorwart Nhi Nguyen Carsten Riedel Frederik Tilmann

Content

- 1. Introduction
- 2. Problems:
 - 1. Deployment & stations
 - 2. The water layer
 - 3. The sediment and mushy layer
 - 4. Noise & tilt
- 3. Open questions

Need for sea-floor seismic data

- Prospecting natural resources like gas or oil and monitoring field production
- Estimating natural hazard by seismic methods, e.g. slope instabilities, volcanism, earthquakes
- Filling large gaps for passive seismological observations

The sea-floor problem

Seismogram example: local earthquake and short period sensors

Local earthquake, Tyrrhenian sea, wide band sensor (0.03-15 Hz)

Implosive source, indian ocean, 4.5 Hz sensor, (SR=1000 Hz)

Problem 1: deployment

- Ship
- Sensors and sensor gimbaling
- Deployment and coupling

Arni Fridriksson, Tjörnes Fracture Zone Iceland 2004

4C ocean bottom cables

Hydrophone & short period geophone (Hamburg University)

wide-band seismic station (IfM-Geomar)

OBS deployment frame

Problem 2: the water layer

- Water layer multiples
- Waveform decomposition to attenuate multiples
- Potential applications for receiver functions and travel-time residuals

Deep local earthquake, Tyrrhenian Sea, Ml=4

Waveform decomposition from 4C measurments

e.g. Amundson & Reitan (Geophysics, 1995), Thorwart & Dahm (GJI, 2005)

Thorwart & Dahm (GJI, 2005)

P-wave impedance contrast

Receiver functions with OBS

PwP multiples have a large component on in the Q-direction

Synthetic receiver functions

Receiver functions after WF decomposition

Problem of travel time residuals

Predicted apparent time delays

Observed residuals

Problem 3: the mushy and sediment layer

- Ringing and resonances
- Interface waves

Polarisation of ringing phases

Time delay and resonance frequency

Monte Carlo modeling: best fit

M. Thorwart, PhD thesis 2005

Spectrogram over 6 month (TySea): the shift in the resonance peak of the ringing phase indicates compaction of about 5 cm

Applications

- Estimation of sensor orientation
- Estimation of S-wave velocity
- Finding static time delays for S-waves

Scholte waves

See poster from Nhi Nguyen this afternoon !

Problem 4: noise

- High frequency noise (>1 Hz)
- Microseismic noise (0.1-1 Hz)
- Low frequency noise and tilt (< 0.1Hz)

PSD noise in the North Atlantic and Tyrrhenian Sea

Note: the poor station for f < 0.1 Hz can be improved to the noise level of high fidelity stations (e.g. ob21,10)when tilt-induced noise is removed!

Removal of tilt-induced noise

Dahm, Tilmann, Morgan (BSSA, 2005, in press)

Removal of tilt induced noise

Method by Crawford & Webb

(Crawford & Webb (2000) BSSA 90, 952-963)

Noise below 0.1 Hz on horizontal recordings is typically 2 orders of magnitude larger than on verticals. It is generated by transient tilt.

A high coherence between noise on the vertical and horizontal components indicates a poorly leveled station (static tilt).

The tilt noise signal on the vertical is removed by subtracting the cross-over signal predicted from the horizontal recordings.

noise-ob28.23.fy 0.1 PSD1: 2.67273e+ 0.01 E 0.001 E 1e-04 SD2: 6.57544e+1 1e-05 1e-06 0,1 0.01 10 1.0 Coherence 0.0 0.01 0,1 10 1 0.1 0.01 0.001 0.01 0.1 10 3.1416 Transfer Phase(rad) 00000 -3.1416 0.1 0.01 10 Freq(Hz)

Example of transfer function estimation

PSD of Z and X component

Coherency

Amplitude of transfer function

Phase of transfer function

Dahm, Tilmann, Morgan (BSSA,2005)

Estimated static tilt from noise

Tyrrhenian Sea

ob05	ob06	0b08	ob10	0b11
0.3	(34)	2.1	1.2	1.3

North Atlantic

ob21	ob23	ob26	ob28	ob29
0.3	0.7	0.8	7.1	1.9

3. Open questions

- 1. Scholte waves what is the role of:
 - 1. Porosity
 - 2. Anisotropy
 - 3. Topography
 - 4. Presence of gas
- 2. Origin of strong "leaky phases" in Tyrrhenian Sea?
- 3. What is the role of non-geometric waves ?
- 4. Should we consider gravity for mushy layer modeling?

What are these waves ? Pl?

raw data recordsection: ob05 and ob06 are 'short period' sensors

Low-pas filtered (0.1 Hz)

P-wave leaky modes in mud. Are they expected in mushy layer?

P leaky modes are faster than Rayleigh waves

Roth, Holliger & Green (GRL, 1998)

Non-geometric PS-phase in mud. Are they important at seafloor?

Influence of gravity on leaky mode Rayleigh waves (Gilbert, 1970)

normal Poisson ratio

Summary

- Improvement of deployment techniques is needed
- Water layer multiples can be attenuated by waveform decomposition (4C data needed).
 Technique has other potential applications
- Mushy layer introduces ringing and unknown signals
- LP noise on Z can be attenuated when stations were poorly leveled