Volcano Seismology

Questions to the simulation group

How it should (!) work!

modified after Tilling

How to use seismology in order to improve early warning sytems at active volcanoes?

The fundamental idea is that seismic signals are generated:

- by (an-)elastic response of the volcanoes edifice to stress induced by ascending magma
- by pressure fluctuations of the moving multiple phase flows within the feeder system
- instabillity of volcanic/structural features located at the surface such as lava domes
- interaction between hot magmatic bodies and cold environment (e.g., magma – water interaction)

The type, <u>location</u> and rate of seismic signals reflect the dynamic and volumetric behavior of the magmatic system at a volcano.

What do we need to know?

- precise hypocentral estimation in order to detect fluid migration and the extent of magmatic bodies
- <u>source mechanisms</u> of the different types of seismic signals in order to discriminate possible different stages of activity levels
- long term behavior of the volcano's seismicity
- what is the influence of <u>external features</u> on the volcanic system as well as on the <u>key monitoring</u> <u>parameter</u>

One Type of Volcanic Tremor

Seismic Network at Mt. Merapi

01 July - 30 September 1998

Automatic Localization (VT-B Events)

Seismic Network at Galeras Volcano

Seismic Network at Mt. Merapi

Array-Advantages

GRW0 – GRW1

Array-Advantages

Wavefield Properties

Seismic Swarms

Cluster-1 (KLT0 - Z)

Q	10	20
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
**************************************		Mummum
		MMAAMAAMAAMAAMAAMAAMAAMAAMAAMAAMAAMAAMA
		MMMmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
	-www.www.www.www.	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
<u> </u>		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
······		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
		Mummum
		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Ó	10	20
	Tin	ne [s]
0	10	20
Cluster1		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Cluster3	-www.hwl.wl.MMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Cluster4		MMMMMMMmmmMMmmmm
Ó	10	20
	Stack of all Clu	uster (KLT0-Z)

Scattering - a different view

b)

Scattering and Source Mechanism

What to do with these Signals?

Many-Phases (MP)

Many-Phases (MP)

Amplitude Localization

- Body Waves: $A^2 \sim A_0^2/r^2$
- Surface-Waves: $A^2 \sim A_0^2/r$ (Jolly et al., 2002)
- Near-Field: $A^2 \sim (A_0/r + B_0/r^2)^2$
- <u>Scattering:</u> $A^2 \sim A_0^2 (\eta max/2\pi r)^{3/2} \exp\{-r \eta max\}$ (Wegler and Lühr, 2001)

	me [s]		
0	120	240	360
			-
duditil.	and the second second		14
""ghint" seidense			
m Madarana	I I I I I I I I I I I I I I I I I I I		
			-
ىرىنىغ ئەلەر يېرىنى يۇرىنىغ ئەلەر يېرىنى	in the test in the second s		
and the second secon	and here and		м ^и .
		<u> </u>	\$
		<u> </u>	
14.5			
	(())))))))))))))))))))))))))))))))))))		
			
	<u></u>		
			
	<u> </u>		
	W t		-
			~
Ċ	120 Ti	240 me [s]	360

Galeras – Project Parametrization of Tornillo-Signals

Station Achalay

Frequency (Hz)

 $V = 0.13 \ \mu m / s t_R = 0.96 s$

160

Time(s)

Q = 610

160

Time (s)

180

180

200

200

X 1

man

140

140

X 1

What to do next?

 \Rightarrow We MUST model the seismic wave field in 3D

Simulation of seismic wave propagation

Ripperger et al., 2003

What next?

Figure 6: Recording of a rockfall event at Merapi volcano on March, 30th, 2002. Shown is the variation of the velocity during the rockfall event as a function of time.

Combining all activity parameters to form an objective alert system (incl. HMM and Al systems)

Early warning using speech recognition

What to do next?

Research on external influences on activity parameters and eruptive behavior

External modulation of volcanic activity and monitoring parameters

Coseismic Step in Fumarole Temperature

courtesy M. Zimmer

Correlation: Gas + Seismic?

Min

Mixing of External and Internal Influences

