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Waveform Sensitivity Kernels for General Aspherical Perturbations

Perturbation theory for seismic motions

General formulation

General formulation
Equation of motion for an earth model in the frequency domain:

Ĥu− ρω2u = f . (1)

For an SNREI earth we write

Ĥ0u
0 − ρ0ω

2u0 = f . (2)

With a perturbation ansatz:

Ĥ = Ĥ0 + Ĥ1 ρ = ρ0 + ρ1

u = u0 + v |v| � |u| (3)

we obtain

(Ĥ0 − ρ0ω
2)v = −(Ĥ1 − ρ1ω

2)u

(Ĥ0 − ρ0ω
2)v = −Ẑu (4)

On order to derive sensitivity kernels, we will later set the total field to u0, but this is
not yet necessary. In this way the formula remains still exact:

(Ĥ0 − ρ0ω
2)v = −Ẑu . (5)
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Free mode expansion and matrix elements

To make use of results derived by Woodhouse and Dahlen (1978) and Woodhouse (1980), we
expand scattered and total displacement into eigenfunctions of the SNREI earth model:

u =
X
k,m

ukm(ω)skm(r , θ, φ)

v =
X
k,m

vkm(ω)skm(r , θ, φ) . (6)

The eigenfunctions satisfy:

Ĥ0skm = ρ0ω
2
kskm , (7)

where the eigenfunctions skm can be of two different kinds, spheroidal and toroidal:

sSn`m = D̂S
n`(r)Y`m(θ, φ) sTn`m = D̂T

n`(r)Y`m(θ, φ) . (8)

The Y`m(θ, φ) are spherical harmonics. The operator D̂n`(r) contains the radial eigenfunctions
Un`(r), Vn`(r) und Wn`(r) of the earth model:

D̂S
n`(r) = Un`(r)er + Vn`(r)∇1 D̂T

n`(r) = −Wnl (r)er ×∇1 , (9)

where ∇1 = eθ
∂
∂θ

+ eφ
1

sin θ
∂

∂φ
is the surface gradient.
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Free mode expansion and matrix elements

The index k comprises the mode type, the radial overtone number n and the angular degree `.
The perturbation equation (Ĥ0 − ρ0ω

2)v = −Ẑu then readsX
km

vkm(Ĥ0 − ρ0ω
2)skm = −

X
km

ukmẐskmX
km

vkm(ρ0ω
2
k − ρ0ω

2)skm = −
X
km

ukmẐskm . (10)

Since the eigenfunctions satsify an orthonormality relation:Z
V

ρ0s
∗
k′m′ · skm dV = δk′kδm′m , (11)

multiplying the perturbation equation on both sides by s∗
k′m′ and integrating over volume,

yields

vk′m′ (ω) = −
1

ω2
k′ − ω2

X
km

ukm(ω)

Z
V

(s∗k′m′ · Ẑskm) dV . (12)

The integral expression on the right hand side is called a matrix element. Its explicit form has

been derived by Woodhouse and Dahlen (1978) and Woodhouse (1980).
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Generalized spherical harmonics

One of their basic result is that the matrix elements can be written as bilinear forms
depending on s, s∗,∇s and∇s∗:Z

V
(s∗k′m′ · Ẑskm) dV = Qk′km′m(s, s∗,∇s,∇s∗) . (13)

This fact can be used to find a general expression for the matrix elements. We use canonical
coordinates with basis vectors

f−1 =
1
√

2
(eϑ − ieϕ), f0 = er , f+1 =

1
√

2
(−eϑ − ieϕ) . (14)

use of these basis vectors allows a generalization of the conventional spherical harmonics
expansion to vector and tensor fields, for example the eigenfunctions can be expanded
according to:

s(r , ϑ, ϕ) =
+1X

α=−1

Uα
`m(r)Y α

`m(ϑ, ϕ) fα . (15)

with an obvious generalization to higher order tensor fields.



Waveform Sensitivity Kernels for General Aspherical Perturbations

Perturbation theory for seismic motions

Generalized spherical harmonics

Generalized spherical harmonics
The functions Y α,m

` (ϑ, ϕ) are called generalized spherical harmonics (GSH). They are useful
to switch for example from a geographical to an epicentral reference frame with epicentral
distance β and azimuth ξ:

Y`σ(β, ξ) =
X
m

Y σ
`m(ϑ, ϕ)Y`m(ϑR , ϕR) . (16)

This is called the addition theorem of generalized spherical harmonics.
GSH can also be used to express the gradient of a vector field, for example:

∇s =
+1X

σ=−1

+1X
β=−1

„
δβ
0 U̇σ

`m + |β|
1

r
Uσ

`mΩβσ
` −

1

r
|β|Uβ+σ

`m

«
Y β+σ

`m (ϑ, ϕ) fσ fβ , (17)

with

Ωβσ
` =

r
`(` + 1)− σ(σ + β)

2
. (18)

It becomes clear that the matrix element, which is a bilinear form in s, s∗,∇s and∇s∗, can be
expanded into GSH according to the following general form:

s∗k′m′ · Ẑskm = γ`′γ`

+2X
p=−2

+2X
q=−2

χ
(pq)
k′k (r , ϑ, ϕ)Y p

`m(ϑ, ϕ)Y q
`′m′ (ϑ, ϕ) . (19)

Important here is that the upper indices of the GSHs (p and q) take only values between −2

and 2! The expression γ` =
q

2`+1
4π

has been extracted for convenience reasons.
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Formulation as a scattering problem
We can use this representation of the matrix element to reformulate the equation

vk′m′ (ω) = −
1

ω2
k′ − ω2

X
km

ukm(ω)

Z
V

(s∗k′m′ · Ẑskm) dV (20)

= −
γ′`

ω2
k′ − ω2

X
km

ukm(ω)γ`

+2X
p,q=−2

Z
V

χ
(pq)
k′k (r , ϑ, ϕ)Y p

`m(ϑ, ϕ)Y q
`′m′ (ϑ, ϕ) dV

as a scattering problem.
First of all, we return to the scattered displacement at some receiver

v(ϑR , ϕR) =
X
k′m′

vk′m′sk′m′ (21)

= −
X
k′m′

γ′`sk′m′

ω2
k′ − ω2

X
km

ukm(ω)γ`

+2X
p,q=−2

Z
V

χ
(pq)
k′k (r , ϑ, ϕ)Y p

`m(ϑ, ϕ)Y q
`′m′ (ϑ, ϕ) dV

To simplify things, we consider the scattered field of mode type t′ and overtone branch n′

excited by mode type t and overtone branch n:

vt′t
n′n(ϑR , ϕR) = −

X
`′m′

γ′`s
t
n′`′m′

ω2
n′`′ − ω2

X
`m

ukm(ω)γ`

+2X
p,q=−2

Z
V

χ
(pq)
k′k (r , ϑ, ϕ)Y p

`m(ϑ, ϕ)Y q
`′m′ (ϑ, ϕ) dV .
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Formulation as a scattering problem

Frequency

Degree

n=0

n=1

n=2

n=3
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Formulation as a scattering problem
Now we insert the definition (a = earth radius):

stn`m(a, ϑR , ϕR) = Dt
n`(a) Y`m(ϑR , ϕR) , (22)

and obtain

vt′t
n′n(ϑR , ϕR) =−

X
`′m′

γ′`D
t
n′`′ (a) Y`′m′ (ϑR , ϕR)

ω2
n′`′ − ω2

× (23)

X
`m

ukm(ω)γ`

+2X
p,q=−2

Z
V

χ
(pq)
k′k (r , ϑ, ϕ)Y p

`m(ϑ, ϕ)Y q
`′m′ (ϑ, ϕ) dV .

We can now apply the addition theorem for GSH to introduce scatterer centered coordinates β
and ξ giving the distance and azimuth of the receiver with respect to the scatterer:

Y`′q(β, ξ) =
X
m′

Y q
`′m′ (ϑ, ϕ)Y`′m′ (ϑR , ϕR) . (24)

and rewrite the above equation as

vt′t
n′n(ϑR , ϕR) =−

X
`′

γ′`D
t
n′`′ (a)

ω2
n′`′ − ω2

× (25)

+2X
p,q=−2

Z
V

Y`′q(β, ξ)
X
`m

χ
(pq)
k′k (r , ϑ, ϕ) γ`ukm(ω)Y p

`m(ϑ, ϕ) dV .
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Formulation as a scattering problem

This formula is easily interpreted: the total field at the scatterer excites a scattered signal
whose strength is controlled by the interaction coefficients χk′k . The signal is propagated to
the receiver by the spherical harmonic Y`′q(β, ξ). We can still modify the formula bit. There
exist generating operators Gp

` with the following property:

γ`Y
p
`m =

γ`

Θp
`

Ĝp
` Y 0

`m =
1

Θp
`

Ĝp
` Y`m , (26)

where

Θp
` =

»
(` + |p|)!
(`− |p|)!

– 1
2

. (27)

Using these operators we can write

vt′t
n′n(ϑR , ϕR) =−

X
`′

γ′`D
t
n′`′ (a)

ω2
n′`′ − ω2

× (28)

+2X
p,q=−2

Z
V

Y`′q(β, ξ)
X

`

χ
(pq)
k′k (r , ϑ, ϕ)

1

Θp
`

Ĝp
`

X
m

ukm(ω)Y`m(ϑ, ϕ) dV .
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Applying the Poisson sum formula

Now, we are prepared to make the transition from modes to waves by applying the Poisson
sum formula:

∞X
`=0

g` =
∞X

s=−∞

Z ∞

0
g(ν)e2πisνdν . (29)

l0

Frequency

Degree

n=0

l0’

n’=3
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Applying the Poisson sum formula

Application of this formula to the sum over `′ and evaluation of the integral using the theorem
of residues leads to the following expression:

vt′t
n′n(ϑR , ϕR) =−

i

4c ′U′D
t
n′`′0

(a)

Z
V

dV

„
β

sin β

«1/2 +2X
q=−2

1

Θq
`′0

H
(2)
|q| (z

′
0β)[−s(q)ν′0]

|q|e iqξ×

(30)

2X
p=−2

X
`

χ
(pq)

k′
0k

(r , ϑ, ϕ)
1

Θp
`

Ĝp
`

X
m

ukm(ω)Y`m(ϑ, ϕ) .

To apply the same procedure to the sum over `, for simplicity we now set u = u0. For an
impulsive point source:

X
m

u0
km(ω)Y`m(ϑ, ϕ) = γ`

2X
s=0

(−1)s
P`s(cos ϑ)

ω2
` − ω2

Re
h“√

2e iϕ
”s

qks

i
. (31)
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Applying the Poisson sum formula

Poisson formula and theorem of residues then yields

vt′t
n′n(ϑR , ϕR) =−

i

4c ′U′D
t
n′`′0

(a)

Z
V

dV

„
β

sin β

«1/2 +2X
q=−2

1

Θq
`′0

H
(2)
|q| (z

′
0β)[−s(q)ν′0]

|q|e iqξ×

(32)

2X
p=−2

χ
(pq)

k′
0k0

(r , ϑ, ϕ)
1

Θp
`0

Ĝp
`0
× (33)

−i

4cU

„
ϑ

sin ϑ

«1/2 2X
s=0

(−1)sνs
0H

(2)
s (z0ϑ)Re

h“√
2e iϕ

”s
qk0s

i
.

This is the general formula for calculating Born scattering seismograms for general aspherical

perturbations. It can also be used to compute sensitivity kernels by restricting the support of

the interaction coefficients χ
(pq)

k′
0k0

(r , ϑ, ϕ) to a small volume and by computing the scattered

field as a function of the location of the volume. It remains to evaluate the interaction

coefficients for the desired kind of perturbations.
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Interaction terms for general anisotropic perturbations

For anisotropic perturbations the matrix element takes the following formZ
V

(s∗k′m′ · Ẑskm) dV =

Z
V
∇s∗k′m′ : δC : ∇skm dV . (34)

Using a GSH representation of the eigenfunctions,

skm =
+1X

α=−1

Uα
km(r)Y α

km fα . (35)

the integrand can be written

∇s∗k′m′ : δC : ∇skm =
X
αβ

X
ρτ

U
α|β
k′m′ (−1)ρ+τ δCβα,−ρ,−τU

τ |ρ
km Y ρ+τ

km Y β+α
k′m′ (36)

with

U
τ |ρ
km =

„
δρ
0 U̇τ

km + |ρ|
1

r
Uτ

kmΩρτ
` −

1

r
|ρ|Uρ+τ

km

«
. (37)

These equations allow an evaluation of the interaction terms from the radial eigenfunctions of
a spherically symmetric earth model. Explicit expressions are skipped here but we note some
symmetry properties.
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Symmetry properties
Setting p = ρ + τ and q = α + β one can write the interaction coefficients in the form

χp,q
k′k = U

q−β|β
k′m′ (−1)pδCβ,q−β,−ρ,−p+ρU

p−ρ|ρ
km . (38)

Due to the symmetry relations (not proven here)

U
−α|−β
km = U

α|β
km (39)

and
δCαβγδ = (−1)α+β+γ+δδC−α,−β,−γ,−δ , (40)

it can be shown that

χ−p,−q
k′k = (−1)p−qχpq

k′k . (41)

Thus, from the 25 interaction coefficients we only need to compute 13. Since the sum of the
indices of the elastic tensor is q − p we order the interaction coefficients according to this
quantity. An evaluation shows that there are

I 3 coefficients with q − p = 0. They contain five elastic constants which represent
transversely isotropic perturbations

I 4 coefficients with q − p = 1. They contain 6 elastic constants.

I 3 coefficients with q − p = 2. They contain 6 elastic constants.

I 2 coefficients with q − p = 3. They contain 2 elastic constants.

I 1 coefficient with q − p = 4. It contains 2 elastic constants.
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Examples

Spheroidal-spheroidal coupling, transversely isotropic
perturbation, symmetric radiation pattern

Great circle section:

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 35 sec.

Cross section perpendicular to great
circle:

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 35 sec.



Waveform Sensitivity Kernels for General Aspherical Perturbations

Special case: Anisotropy

Examples

Toroidal-spheroidal coupling, transversely isotropic
perturbation, non-symmetric radiation pattern

Great circle section:

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 35 sec.

Cross section perpendicular to great
circle:

5˚10˚15˚20˚
25˚

6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 35 sec.
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Special case: Anisotropy

Examples

Spheroidal-toroidal coupling, transversely isotropic
perturbation, symmetric radiation pattern

Great circle section:

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

30˚
35˚

5600
6000

t = 16 min. 35 sec.

Cross section perpendicular to great
circle:

5˚10˚15˚20˚
25˚

6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

6000

t = 16 min. 35 sec.



Waveform Sensitivity Kernels for General Aspherical Perturbations

Special case: Anisotropy

Examples

Spheroidal-spheroidal coupling, purely anisotropic
perturbation δC 1111, δC−1,−1,−1,−1, symmetric radiation
pattern

Great circle section:

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 50 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 55 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 40 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 45 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 30 sec.

5˚10˚15˚20˚
25˚

5600

6000

t = 16 min. 35 sec.

Cross section perpendicular to great
circle:

5˚10˚15˚20˚
25˚

6000

t = 14 min. 20 sec.

5˚10˚15˚20˚
25˚

6000

t = 14 min. 25 sec.

5˚10˚15˚20˚
25˚

6000

t = 14 min. 10 sec.

5˚10˚15˚20˚
25˚

6000

t = 14 min. 15 sec.

5˚10˚15˚20˚
25˚

6000

t = 14 min. 00 sec.

5˚10˚15˚20˚
25˚

6000

t = 14 min. 05 sec.


	Perturbation theory for seismic motions
	General formulation
	Free mode expansion and matrix elements
	Generalized spherical harmonics

	From modes to waves
	Formulation as a scattering problem
	Applying the Poisson sum formula

	Special case: Anisotropy
	Interaction terms for general anisotropic perturbations
	Symmetry properties
	Examples
	Examples
	Examples
	Examples


