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Introduction

Introduction

The computation of synthetic seismograms for a layered earth is one of the basic tools
for inferring the 3D–structure of the earth. This is true from a theoretical point of view
because most methods which attempt to compute synthetic seismograms for a
3D–heterogeneous earth use a spherically symmetric earth model as a reference for
perturbation methods. It is, however, also true from the observational point of view,
since travel times of long–period body waves and phases of surface waves are often
measured by cross–correlating the observed seismograms with synthetic ones.
Though the basic theory for this problem is well known for a long time, a numerical
realization is still a non-trivial task and may require some computation time even on
modern computers.
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Essentials of wave propagation theory on a layered Earth

Wave propagation problems always start with the general elastodynamic equation.
Here, we first take a Fourier transform with respect to time and we neglect effects of
gravity and prestress:

−ρω2u = ∇·σ + f . (1)

ρ is the equilibrium density, u the displacement from equilibrium, σ is the stress tensor
due to the perturbation and f is the equivalent body force per unit volume due to a
seismic source. Gravity is neglected because it is important only at very low frequencies.
We consider a layered, transversely isotropic earth model with density ρ and the five
elasticity constants A, C , F , L and N (Takeuchi & Saito 1972) depending on depth
only. Attenuation is included by introducing complex elastic moduli (Müller, 1983).
Boundary conditions are regularity of the solutions at infinite depth (or the earth’s
center), continuity of displacement and traction at solid–solid interfaces and vanishing
of traction at the surface of the earth. At fluid–solid boundaries continuity is required
for traction and vertical displacement only.
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Separation of variables

Partial analytical solutions of this problem are available if the horizontal dependence of
the wavefield can be separated from the vertical dependence. It is known that such a
separation is only possible in cartesian, cylindrical and spherical coordinates. In
cartesian and cylindrical coordinates the depth coordinate would be z , while in
spherical coordinates the vertical coordinate would be r . Here, we denote the vertical
coordinate by v to realize a common notation valid for all three cases.
A further restriction arises from the elastic symmetry of the medium which must be at
least hexagonal with a vertical symmetry axis. Since such a medium is isotropic in a
horizontal plane it is often called “transversely isotropic”.
A separation of the horizontal from the vertical dependence of the wavefield can be
achieved if the displacement vector u, the traction vector on horizontal planes t = ev ·σ
and the exciting force vector f are represented in terms of scalar potentials as follows:

u = Uev +∇HV − ev ×∇HW

t = Rev +∇HS − ev ×∇HT

f = Fev +∇HG − ev ×∇HH, (2)
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∇H is the horizontal gradient or surface gradient given by

∇H = ex
∂
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Insertion of the above representation in terms of scalar potentials into the
elastodynamic equation and ordering the result as components of “basis” vectors ev ,
∇H and −ev ×∇H leads to expressions where derivatives with respect to horizontal
coordinates occur only in terms of the surface Laplacean:
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For example the −ev ×∇H -component of the elastodynamic equation for an isotropic
medium in spherical coordinates takes the form

−ρω2W =

„
∂

∂r
+

3

r

«
T +

µ

r 2
(∇2

H + 2)W + H . (5)

Now we can perform the classical separation of variables: write the potentials W , T
and H as product of a function depending on v (the vertical coordinate) and a
function depending on the horizontal coordinates (spherical example continued)

W (r , ϑ, ϕ) = w(r)Y (ϑ, ϕ), T (r , ϑ, ϕ) = t(r)Y (ϑ, ϕ) , (6)

and obtain after some ordering and division by Y

ρω2w +

„
∂

∂r
+

3

r

«
t + 2

µ

r 2
w + h = − µ

r 2
w
∇2

HY

Y
. (7)

On the left hand side, we have a function of r while on the right hand side we have a
product of a function of r and a function of the horizontal coordinates. To satisfy this
equation for arbitrary w , t and h, the function ∇2

HY /Y must be a constant:

∇2
HY (ϑ, ϕ) = −c2Y (ϑ, ϕ) (8)
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In case of spherical coordinates, solutions to this equation which are regular at the
poles are the spherical harmonics Y m

` (ϑ, ϕ) with c2 = `(` + 1).
We thus see that a general solution for the scalar W (r , ϑ, ϕ) can be written in the form

W (r , ϑ, ϕ) =
∞X
`=0

X̀
m=−`

wm
` (r)Y m

` (ϑ, ϕ), (9)

with analogous expressions for the other potentials. Inserting the value −`(` + 1) for
the ratio ∇2

HY /Y leads to one of two equations for the expansion coefficients wm
` (r)

and tm
` (r):

∂t

∂r
= −ρω2w + (`(` + 1)− 2)

µ

r 2
w − 3

r
t − h (10)

The other equation can be derived from the stress-strain relation which connects the

displacement potential w with the stress-potential t.
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Very similar results can be derived for cartesian and cylindrical coordinates.
Eigenfunctions of the horizontal Laplacean in cartesian coordinates are

Y (x , y) = exp(ikxx) exp(ikyy) with c2 = k2
x + k2

y = k2 (11)

leading to a 2D-Fourier integral representation of the scalar potentials

W (z , x , y) =

Z ∞

−∞

Z ∞

−∞
w(z , kx , ky ) exp(ikxx) exp(ikyy)dkxdky . (12)

For cylindrical coordinates, the eigenfunctions of the surface Laplacean are
Fourier-Bessel functions

Y (z , r , ϕ) = Jm(kr) exp(imϕ) with c2 = k2 (13)

leading to a Fourier-Bessel representation of the scalar potentials

W (z , r , ϕ) =
∞X

m=−∞

Z ∞

0

wm(k, z)Jm(kr) exp(imϕ)kdk (14)
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System of ordinary differential equations

The above analysis is valid for wave propagation in a layered halfspace and a layered
sphere. The essence is that the problem can be reduced to the solution of systems of
coupled first order ordinary differential equations (SODE) with respect to the vertical
coordinate for each expansion coefficient (either spherical harmonic or plane wave or
Fourier-Bessel). The SODEs themselves are non-trivial as we shall see later. In the
following I shall concentrate on the spherical problem appropriate for global wave
propagation in the earth.
Fortunately, some of the potentials are independent from each other. There is one
SODE for w and t (the −er ×∇H -components of displacement and traction)
representing toroidal or SH motion and one SODE for u,v ,r ,s representing
spheroidal or P-SV motion. They have the following general form:

∂y

∂r
= Ay + sδ(r − rs) (15)

where y is known as the displacement-stress-vector (DSV) because two of its
components are displacement potentials and two stress potentials. The excitation
vector s is filled with the expansion coefficients of the force potentials.
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System matrices
For toroidal motion (SH) the matrix A takes the following form:

AT =

0B@ − 2
r

1
L

−ω2ρ− N
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r

1CA . (16)

For spheroidal motion (P-SV), its form is
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(17)
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Numerical solution of the SODE

Here, I describe how the SODE is numerically solved by the GEMINI code.

I From four basis solutions below and above the source depth, there exist two
regular ones below the source and two satisfying the homogeneous boundary
conditions above the source. Let us denote them by b±1 and b±2 .

I Then, the solution can be written (omitting the indices l and m):

y±(r) = c±1 b±1 (r) + c±2 b±2 (r) . (18)

I Since the jump of he DSV at the source depth is known the coefficients c±1,2 can
be determined:

y+(rs)− y−(rs) = s (19)

c+
1 b+

1 (rs) + c+
2 b+

2 (rs)− c−1 b−1 (rs)− c−2 b−2 (rs) = s . (20)

I However, a stable solution of this equation is not always possible. For this reason,
the numerical solution has to be sought in quite a different way.
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Numerical solution of the SODE

I minor vectors are constructed from the basis solutions below and above the
source:

m±ij (r) = b±1i (r)b
±
2j (r)− b±2i (r)b

±
1j (r) (21)

with
m± = (m±12, m

±
13, m

±
14, m

±
23, m

±
24, m

±
34) (22)

and m1(r) ∝ m6(r).

I Differentiating the definition of the minors one obtains

dmjk

dr
= Ajl mlk + Akl mjl . (23)

With the ordering of the minors into a vector of five elements one can setup a
system of five differential equations for the minors. They can therefore be
integrated directly with the same accuracy as the basis solutions. The initial
values result from the initial values of the basis solutions.
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Numerical solution of the SODE

I The following must be given without derivation. See Friederich and Dalkolmo,
GJI, 122, 537-550, 1995 for details. Construct from the minors the matrices

M̃± =

0BB@
0 m1 m2 m3

−m1 0 m4 m5

−m2 −m4 0 m6

−m3 −m5 −m6 0

1CCA (24)

I Solve in addition a system of four differential equations from the source up and
down to the receivers:

dg(r)

dr
= −AT (r) g(r) . (25)

Initial values can be obtained from the values of the minors and the jump of the
DSV at the source.

I The desired solution is then given by

y±(r) = ±M̃±(r) g±(r) (26)

This way of computing the Green function for a specified point source is stable.
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Frequency-wavenumber spectrum and record section

The figure shows the absolute value of the expansion coefficient u0
`(ω, rE ) for an explosive

point source at 33 km depth with maximum frequency of 200 mHz (left) and the same for a
source at 600 km depth and maximum frequency 20 mHz (right).
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Computation of displacement spectra and synthetic
seismograms
The above described major computation step of GEMINI calculates the spherical
harmonics expansion coefficients of the displacement-stress potentials. Displacement
spectra are obtained by the formula:

u(r , ϑ, ϕ, ω) =
∞X
`=0

X̀
m=−`

(um
` (r , ω)Y m

` (ϑ, ϕ)er + vm
` (r , ω)∇HY m

` (ϑ, ϕ)

−wm
` (r , ω)(er ×∇H)Y m

` (ϑ, ϕ)) . (27)

In practice, two important simplifications apply.

I For a moment tensor point source at the pole of the spherical coordinate system,
angular orders m range only from −2 to 2.

I There is an upper bound for the harmonic degree l at fixed frequency beyond
which contributions to the synthetic seismogram fall off exponentially. The sum
over harmonic degree l need not be performed to infinity but only to a
well-defined maximum value (see file lw200mhz).

Synthetic seismograms are obtained by a Fourier transform into the time domain.
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Computation of displacement spectra and synthetic seismograms
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Working with the GEMINI program

The computation of synthetic seismograms with GEMINI is done by running three
different programs:

I gemini: Computation of spherical harmonics expansion coefficients for fixed
source depth, time window length and maximum frequency

I dispec: Computation of displacement spectra for given moment tensor and
station locations

I totido: Transform of displacement spectra into the time domain
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Input for gemini
# Choose the kind of motion you like to calculate. Set the

# variable to 1 for P-SV-motion only; set it to 2 for SH-motion only;

# set it to 3 to calculate all P-SV- and SH-motion.

Which_Motion=3

# Verbose level for monitor-output. ’0’ yields monitoring every

# frequency; n every degree if mod(l,n)=0

Print_Level=0

# Length of seismogram in seconds

Seismo_Length=5400

# Damping time for complex frequency (->Laplace transform). A good

# choice is a fifth of the seismogram length.

Damping_Time=1080

# Minimum frequency in millihertz. You can set it to zero, ’Gemini’ will

# adjust it to at least 1/Seismo_Length

Minimum_Frequency=0

# Maximum frequency in millihertz

Maximum_Frequency=100
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Input for gemini

# Take into account dispersion (attenuation), which leads to

# frequency-dependent elastic moduli. Set 1 for ’yes’, 0 for ’no’.

Dispersion_Switch=1

# Minimum degree of spherical harmonics. We recommend ’0’.

Minimum_Degree=0

# Maximum degree of spherical harmonics. ’Gemini’ will not compute

# beyond this limit.

Maximum_Degree=1000

# Step in the degree-domain. Normally this is ’1’, because of the

# 2*Pi-periodicity. Setting this greater than ’1’ speeds up the

# calculation and gives nice alias-effects because the Earth will

# become 2*Pi/lstep-periodic!!

Degree_Step=1

# Depth of the source in [km]. You can set this to Zero, if you like

Source_Depth=33.
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Input to gemini

Input for gemini

# Accuracy which rules the performance of the integration

# algorithm (Bulirsch-Stoer). Don’t be too greedy, 1.e-4 should be

# sufficient

Accuracy=1.e-4

# File name of the earth model.

Earth_Model=stutprem

# File name of the window in the frequency-degree-domain, which contains

# tabulated maximum degrees for selected frequencies.

Omega_Ell_Window=lw200mhz

# Name of output file with expansion coefficients

Output_Filename=green/bas.f50.d33.3.out

# Confirm the input

Confirmation=1

#-------------------------------------------------------------------
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Input for dispec

# Give here the file with the basis solutions calculated by GEMINI

BasisSolutions=green/bas.f100.d33.3.out

# The following variable must tell the source file containing ONE

# set of earthquake parameters in Harvard-CMT-format

SourceFile=sources/C062003G

# This defines the source mechanism: moment tensor (’m’)

# or single force (’f’):

SourceMech=m

# Set maximum order ’m’ in the sum over spherical harmonics here.

# For example, set ’m=0’ if the source is explosion type

MaximumOrder=2

# This file must contain the window in the omega-l-domain also needed

# by GEMINI

OmEllWindow=lw200mhz
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Input for dispec

# Give here the length of the taper which is applied on the l-range

# to avoid cut-off-effects. This is an empirical number, don’t choose

# it too large, you may cut in the surface wave branch

EllTaper=40

# This is the name of the file with station names and parameters defined

# in IRIS-DMC format

StationFile=stations/GRSN_2003

# Specify here 1 -> Station by latitude and longitude in degrees

# the receiver type: 2 -> Station by its abbreviation (e.g. PFO)

# 3 -> all stations in file

# 4 -> section along great circle between two points on sphere

ReceiverType=2
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Input for dispec

# Now, coordiantes or station name or all stations or section?

# Example: Type 1 : Receiver=’48.3 8.3’

# Type 2 : Receiver=’BFO’

# Type 3 : Receiver=’all’ (this is a dummy,

# program reads format ’(1x)’

# Type 4 : Receiver=’-30. -71. 48.3 8.3 10’

#

Receiver=’BFO’

# Horizontal displacement is calculated by default in source centered

# coordiantes. If you like to have station centered coordinates, i.e.

# North-South- and East-West-coordinates give here a number greater

# than zero.

NSEWCoordinates=1

#

# The output file will have the name "spec3k" in the current directory.

#

#-----------------------------------------
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Input for totido
# Response file containing real and imaginary part of instrument

# transfer function at the frequencies used in gemini and dispec.

# Each line of the file contains freqeuncy, real part, imaginary part.

ResponseFile=""

# Time by which beginning of times series is delayed

TimeShift=’0.0’

# To apply a Butterworth-filter (low and high pass)

# to the seismogram specify in the string

# the number n of filters and then n times order and corner frequency.

# For example: One low pass with order 7 and corner frequency 0.01 Hz

# Two high pass: order 3 and corner freq. 0.008 Hz AND

# order 2 and corner freq. 0.007 Hz

# -------> type: 1 7 0.01

# 2 3 0.008 2 0.007

LowpassNumber=1

LowpassOrder=5

LowpassCF=0.050

HighpassNumber=1

HighpassOrder=0

HighpassCF=0.0025
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Input for totido

# either a for Ascii output or s for SFF output

OutputFormat="s"

# The Fast Fourier Transform needs 2**n samples. If the spectra do not have

# such a length zeros will be appended to accomplish this. If you give here

# a number n greater than zero, the number of samples will be multiplicated

# with 2**n, resulting in interpolation/smoothing of the time series.

ZeroPadding=2

# With the following character you can choose the type of seismogram:

# type d for displacement, v for velocity, a for acceleration or

# g for accelerometer response.

SeismoType=v

# Specify here the length of the output time series in seconds

SecondsOut=5400
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Input to totido

Harvard CMT file

C082103B 08/21/03 12:12:50.0 -44.97 166.91 33.97.07.0SOUTH ISLAND OF NEW ZEA

PDE BW:79189 45 MW:78195 135 DT= 10.0 0.1 -44.97 0.01 166.91 0.01 33.9 -1.0

DUR 9.8 EX 26 5.09 0.01 -1.03 0.01 -4.05 0.01 -2.72 0.02 -4.25 0.02 -2.81 0.00

1.74 72 83 0.02 2 178 -1.76 18 268 1.75 1 27 93 177 63 88
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Input to totido

Station file

File last updated on

Tue Sep 2003

03 s_station s_location s_lat s_long s_elev s_site

03 BFO GR 48.3301 8.3296 600.0 Black Forest Observatory

03 BRG GR 50.8732 13.9428 340.0 Berggiesshuebel

03 BSEG GR 53.9353 10.3169 40.0 Bad Segeberg

03 BUG GR 51.4406 7.2693 131.0 Bochum University

03 CLL GR 51.3077 13.0026 276.0 Collm

03 CLZ GR 51.8416 10.3724 700.0 Clausthal-Zellerfeld

03 FUR GR 48.1650 11.2770 572.0 Fuerstenfeldbruck

03 GRFO GR 49.6909 11.2203 434.0 Graefenberg

03 IBBN GR 52.3070 7.7570 1.0 Ibbenbueren (elev?)

03 MOX GR 50.6447 11.6156 501.0 Moxa

03 RGN GR 54.5460 13.3640 1.0 Ruegen (elev ?)

03 RUE GR 52.4800 13.7800 1.0 Ruedersdorf (elev?)

03 STU GR 48.7708 9.1933 360.0 Stuttgart

03 TNS GR 50.2225 8.4473 846.0 Taunus Observatory

03 WET GR 49.1440 12.8782 652.0 Wettzell
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Input to totido

Earth model file

#--------------------------------------------------------------------

# Earth model STUTPREM

# ( isotropic PREM without ocean )

#

# Quality factors are taken at 1 Hz !!

# The ocean is removed by enlarging the thickness its underlying solid

# layer by the ocean thickness.

#------------------------------------------------------------

#

# +++++++ Do not insert any comments below this line !! +++++++++++++++

12 Number of layers

3 4 4 4 4 2 2 2 2 2 1 1 Polynomal coefficients of each layer

1.0 Reference frequency of quality factors (Hertz)

0 Tranversal isotropic? 1=y, else=n

--------------------------------------------------------------------------

Radius Density V-Pv V-Ph V-Sv V-Sh Qmu Qk Eta

--------------------------------------------------------------------------

0.0 13.0885 11.2622 11.2622 3.6678 3.6678 84.6 1327.7 1.0

0.0 0.0 0.0 0.0 0.0 0.0

-8.8381 -6.3640 -6.3640 -4.4475 -4.4475 0.0

1221.5 12.5815 11.0487 11.0487 0.0 0.0 -1.0 57823.0 1.0

-1.2638 -4.0362 -4.0362 0.0 0.0 0.0

-3.6426 4.8023 4.8023 0.0 0.0 0.0

-5.5281 -13.5732 -13.5732 0.0 0.0 0.0

3480.0 7.9565 15.3891 15.3891 6.9254 6.9254 312.0 57823.0 1.0

-6.4761 -5.3181 -5.3181 1.4672 1.4672 0.0

5.5283 5.5242 5.5242 -2.0834 -2.0834 0.0

-3.0807 -2.5514 -2.5514 0.9783 0.9783 0.0
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Input to totido

Earth model file

3630.0 7.9565 24.9520 24.9520 11.1671 11.1671 312.0 57823.0 1.0

-6.4761 -40.4673 -40.4673 -13.7818 -13.7818 0.0

5.5283 51.4832 51.4832 17.4575 17.4575 0.0

-3.0807 -26.6419 -26.6419 -9.2777 -9.2777 0.0

5600.0 7.9565 29.2766 29.2766 22.3459 22.3459 312.0 57823.0 1.0

-6.4761 -23.6027 -23.6027 -17.2473 -17.2473 0.0

5.5283 5.5242 5.5242 -2.0834 -2.0834 0.0

-3.0807 -2.5514 -2.5514 0.9783 0.9783 0.0

5701.0 5.3197 19.0957 19.0957 9.9839 9.9839 143.0 57823.0 1.0

-1.4836 -9.8672 -9.8672 -4.9324 -4.9324 0.0

5771.0 11.2494 39.7027 39.7027 22.3512 22.3512 143.0 57823.0 1.0

-8.0298 -32.6166 -32.6166 -18.5856 -18.5856 0.0

5971.0 7.1089 20.3926 20.3926 8.9496 8.9496 143.0 57823.0 1.0

-3.8045 -12.2569 -12.2569 -4.4597 -4.4597 0.0

6151.0 2.6910 4.1875 4.1875 2.1519 2.1519 80.0 57823.0 1.0

0.6924 3.9382 3.9382 2.3481 2.3481 0.0

6291.0 2.6910 4.1875 4.1875 2.1519 2.1519 600.0 57823.0 1.0

0.6924 3.9382 3.9382 2.3481 2.3481 0.0

6346.6 2.9000 6.8000 6.8000 3.9000 3.9000 600.0 57823.0 1.0

6356.0 2.6000 5.8000 5.8000 3.2000 3.2000 600.0 57823.0 1.0

6371.0

-------------------------------------------------------------
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Input to totido

Maximum harmonic degree vs frequency (File lw200mhz)

9

0. 0. 150.

25. 0. 400.

50. 0. 770.

75. 0. 1050.

100. 0. 1400.

125. 0. 1750.

150. 0. 2100.

175. 0. 2400.

200. 0. 2750.
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Input to totido

Descendants of GEMINI

I Green functions for shallow seismic media

I Marine version with water layer for shallow applications (e.g. Scholte modes)

I Full space version with radiation condition at the top of the model. Used to
compute seam waves

I Eigendegrees and eigenfunctions at fixed frequency for toroidal and spheroidal
motion for global and shallow seismic applications

I Version that uses reciprocity relation to compute Green functions for one receiver
and many sources


	Computation of synthetic seismograms for a layered earth
	Introduction
	Essentials of wave propagation theory on a layered Earth
	Separation of variables

	Green functions for a layered spherical earth
	System of ordinary differential equations
	System matrices
	Numerical solution of the SODE
	Frequency-wavenumber spectrum and record section
	Computation of displacement spectra and synthetic seismograms

	Working with the GEMINI program
	Input to gemini
	Input to dispec
	Input to totido


