


Intoduction to Normal mode theory and observation

John Woodhouse
Smolenice, September 2005

* A central goal of global
seismology is to map the Earth’s
internal structure in three
dimensions

* Imaging employs very large data
sets of globally recorded
seismograms

« Research aims to invent methods
of analyzing seismic waveforms to
maximize the retrieval of structural
information and to use such
information in large scale inverse
problems

Model S20RTS: Ritsema, van Heijst and Woodhouse 1999,2004



Free Oscillations or Normal modes

The study of the Earth’s Free Oscillations, or normal modes, can be
regarded as

e) A useful way to calculate theoretical seismograms

g) As the intrinsic and observable spectrum of the Earth



The textbook picture:

(a) P-wave compressions
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The Dispersion curve

w= w(k)

Where;:

w = Frequency (radians/second) = 211/Period
k = Wave number (radians/km) = 2m/Wavelength

Then:
Phase velocity: ¢ = w/k = c(w) (km/s)
Group velocity: U = dw/dk =U(w) (km/s)

In the laterally varying Earth, this translates into the concept of a
local dispersion relation:

w= w(k,6,0p)

Where 0,0 are colatitude and longitude



The dispersion curve w = w(k)

Group velocity=
Frequency w Gradient of tangent = U(w) = dw/dk \

(radians/s) | ,

_ Phase velocity=

Gradient of line to origin = c(w) = w/k

I K B

Wave number k (radians/km)



Examples of dispersed wave trains

Love waves: Kobe-Czech Republic
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The principle of constructive interference and the analogy with the
Somerfeld condition in atomic physics

Number of wavelengths in the
circumference = a k = integer [

THIRD BOHR POSTULATE

Figure 19.8  De Broglie clectron . gioyre 197 A standing de
waves around the circumference of Broglie electron wave around tt

a Bohr orbit in a case in which the
electron wavelength does not
satisfy the standing wave
condition. The waves interfere to
produce a net cancellation.

circumference of a Bohr orbit.




Thus normal modes can be thought of as the
Standing wave patterns set up by disturbances
corresponding to propagating surface waves and
overtones, and much can be learned about them
by relating the properties of the standing wave
patterns to the dispersion characteristics of
travelling waves



Data (upper of each pair) and synthetics (lower of each pair)
for three models. A = 99.5°. Mid-Atlantic ridge event recorded
in W. Australia.
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amplitude spectra
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Equations of Motion

Equations of motion link the seismic displacement field u(x,?) and
the pertubation in gravitational potential ¢ (x, ).

The source, or excitation term can be represented in terms of an ap-
plied force distribution F(x,t). Symbolically, the equations of mo-

tion can then be written
(H+pd?)u = F

H is a complicated integro-differential operator in the spatial do-
main, incorporating the elastodynamic equations and the equations
of gravitation.

F = F(x,t) is the equivalent body force distribution of the seismic
source.

Taking the Fourier transform in time, we obtain

Hu+pw’u = F

where @ = u(x, w) is the temporal fourier transform of u(x, t) etc.



H+pw*)u = F

Thus we need to invert the operator on the left side, in order to solve
for the displacement field u corresponding to a given force distrib-
ution F. One method to do this is first to seek the eigenvalues and

eigenfunctions of H, and thus we are led to the eigenvalue problem
(H+pwi)se = 0

where s, = si(x) is the “k-th” eigenfunction, and w? is the corre-
sponding eigenvalue.
Then representing the displacement field u(x, t) as a sum over eigen-

functions:
u(x,t) = Y a(t)sp(x)
k

We can solve for the excitation amplitudes a;(t). We find
1 ' INF AN !
ag(t) = — [1 — coswyg(t — )] Fr(t)dt
W J o
where

fV Sk - F(X, t)dV

B0 = T so0dv




Eigenfunctions and Eigenvalues

Defining vector spherical harmonics

P = rY"(0,9)
B" = ViY/"(6,¢)
Clm = —i'X Vlyzm(gaqé)

where V; = 0 OJp + cosec 0 25 04, We write
sp(x) = U(r)P"+V(r)B" +W(r)C"

Where r is the radial coordinate. The it scalar eigenfunctions U (r),
V(r), W(r) satisfy a set of linear ordinary differential equations in r.
These can be written in matrix form:

d
=~ A(y
subject to the appropriate boundary conditions at the centre of the
earth, at internal discontinuities and at the free surface. Thus we
obtain an eigenvalue problem for wj. This eigenvalue problem de-
pends on the spherical harmonic order ! but not on the degree m.
i.e. the eigenvalues are degenerate in m yielding 2/ + 1 (- < m <)
different eigenfunctions s, belonging to the same eigenvalue w;.
The equations for U(r), V (r), and the corresponding perturba-
tion to the gravitational potential represented by P(r), together with
their radial derivatives, constitute a 6th order system for spheroidal
or it poloidal modes. These correspond to Rayleigh waves and P-SV
body waves.
The equations for W (r) and its derivative constitute a 2nd order
system for toridal modes. These correspond to Love waves and SH
body waves.



Indicative shapes
of the spherical
harmononics of
low degree / and
order m




Surface shapes of spherical harmonics for higher! and m

I=10 m=0 I=20 m=10 I=32 m=30 I=30 m=30

Fig. 3. Doppler velocities of solar p modes. The shading represents the line-of-sight component of velocity: dark regions are approaching the
observer and light regions are receding (or vice versa). The motion is almost radial, so that the mid-grey at the edges of the sun’s image represents
zero velocity. (A) The zonal mode (m = 0) of degree / = 10; (B and C) tesseral modes with (/, m) = (20, 10) and (32, 30); (D) a sectoral mode
(m = [) of degree 30.



Fig. 8.12. A highly exaggerated picture of the normal mode ¢S2. This mode
has a period of about 54 minutes; the two images are separated in time by 27

minutes.



Event 21 May 1998 (Indonesia) @ "SUM (Tsumeb, Namibia)
(Depth = 28 km; Mw = 6.6; Mb = 6.3- A = 101.5°)
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Examples of fitting (r.m.s. v 0.3-0.1) between waveform data (top record) and synthetic
seismogram (bottom record) for body-waves, low-pass filtered with a cut-off period of 45 s. For
each trace the SRO/ASRO station and the type of instrument (vertical, North-South, East-West)
are indicated. The maximum amplitude of the trace represents the ditigal SRO count. Angular
distance and azimuth of the station are also indicated. Only data included between the dashed
vertical lines are used in the inversion. The examples shown are records of the Irpinia event (Nov.
23, 1980) and of the main shock in El Asnam (Algeria, Oct. 10, 1980). The time scale reports the
time elapsed from the origin time.
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Fig. 3¢ — Comparison of waveform data and synthetic seismograms for mantle waves generated by the same
events shown in Fig. 3a. A low-pass filter with a cut-off period of 135 s is used. The delay time
represents the time elapsed from the origin time to the beginning of the record used in the
inversion.




amplitude spectra

data
§ synthetic
&
3
£ e . ; :
9 frequency (mHz)

Amax= 14

P
WM[W\/\ \}
e
ime
amplitude spectro

data
5 synthetic
8
g
%o ™ 2 3 % L
3 P " frequency (mHz)

h iy mml[ il " | f
3 5 6 7 ; ' 0 1 3

8 9
time (h)

Fig. 3a. — Comparison of data and synthetic seismograms for the « Eureka » earth-
quake off the coast of N. California, date 8/11/1980, origin time 10.27.34.0, published
hypocentral co-ordinates: latitude 41.12 °N, longitude 124.25 °W, depth 19.00 km. IDA
station BDF, starting time of the record relative to the origin time 12626.5 s, angular
distance 90.23°, azimuth of receiver from source 110.59°, azimuth of source from
receiver 312.76°. The aspherical model is that shown in fig. 2.
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Figure 2.1a Toroidal normal modes in the (@, I) plane. The large dots indicate observed modes used in the inversions of Gilbert and Dziewonski
(1975), from whose paper the figure is taken.
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Figure 2.1b Spheroidal normal modes in the (@, /) plane (from Gilbert and Dziewonski, 1975).
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Fig. 2.1. — A dispersion diagram for the PREM model for frequencies up to 35 mHaz.
The diagram represents the eigenfrequencies of spheroidal free oscillations as functions
of angular order. The lowest curve is the fundamental-mode branch.
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