

Seismic wave Propagation and Imaging in

Complex media: a European network

Francesco Pacchiani Post-doctoral researcher

Host Institution: OGS, Trieste Place of Origin: Geneva, Switzerland Appointment Time: January 2007

Project: Green's Function Interpolation for Source Inversion.

Task Groups: TG Numerical Methods, TG Local Scale

Cooperation: University of Hamburg

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

GREEN FUNCTION INTERPOLATION: A USEFUL TOOL TOWARD FAST KINEMATIC SOURCE INVERSION

F. Pacchiani¹ G. Seriani¹ S. Cesca² S. Heimann³ T. Dahm³

¹Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Italia ²SZGRF Erlangen, BGR, Germany ³University of Hamburg, Germany

May 14, 2007

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Objective

- Develop and implement an interpolation method for Green functions.
 - Fast generation of a Green function database.
 - Acceleration of the kinematic source inversion.
 - "Improvement of the spatial resolution."

Outline

- Kinematic source inversion
- Interpolation methods and computational scheme
- Gülünay's method
- Conclusions

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Kinematic Source Inversion

$$u_k(\mathbf{x}_1, t_1) = \int_0^{t_1} \int_{\Sigma} \left[\frac{\delta}{\delta \mathbf{x}_m} G_{kl}(\mathbf{x}, \mathbf{x}_1, t_1 - t) \right] C_{ijlm}(\mathbf{x}) n_j(\mathbf{x}) a_i(\mathbf{x}, t) dt dS$$

u=displacementn=normal to the surfaceG=Green functiona=slip distributionC=stiffness tensora=slip distribution

Kostrov and Das, 1988

Interpolation Context and Constraints

- Data type: regional or teleseismic
- Full waveform
 - waveform conservation
 - absolute amplitude conservation
 - coherent temporal offsets
- Velocity model: 1-D

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Interpolation Context and Constraints

- Data type: regional or teleseismic
- Full waveform
 - waveform conservation
 - absolute amplitude conservation
 - coherent temporal offsets
- Velocity model: 1-D

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Interpolation Context and Constraints

- Data type: regional or teleseismic
- Full waveform
 - waveform conservation
 - absolute amplitude conservation
 - coherent temporal offsets
- Velocity model: 1-D

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

- 1. Linear Interpolation
- 2. Radon Transform (slant stack)
 - Slant-Stack Migration (Novotný, 1987)
- 3. Spectral Methods
 - Spitz's method (Spitz, 1991)
 - Porsani's method (Porsani, 1999)
 - Gülünay's method (Gülünay, 2003)
- 4. Other
 - Wave-equation interpolation (Ronen, 1987)
 - Nonlinear interpolation (Martinson and Hopper, 1992)

Positive

- easy and fast
- requires two waveforms
- coherent temporal offsets

Negative

- amplitudes are not preserved
- waveforms are not necessarily conserved

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

- 1. Linear Interpolation
- 2. Radon Transform (slant stack)
 - Slant-Stack Migration (Novotný, 1987)
- Spectral Methods
 - Spitz's method (Spitz, 1991)
 - Porsani's method (Porsani, 1999)
 - Gülünay's method (Gülünay, 2003)
- 4. Other
 - Wave-equation interpolation (Ronen, 1987)

and the second second

Nonlinear interpolation (Martinson and Hopper, 1992)

Positive

irregular sampling allowed

Negative

numerically costly

- 1. Linear Interpolation
- 2. Radon Transform (slant stack)
 - Slant-Stack Migration (Novotný, 1987)
- 3. Spectral Methods
 - Spitz's method (Spitz, 1991)
 - Porsani's method (Porsani, 1999)
 - Gülünay's method (Gülünay, 2003)
- 4. Other
 - Wave-equation interpolation (Ronen, 1987)
 - Nonlinear interpolation (Martinson and Hopper, 1992)

Negative

- operates on a seismic section
- regular spatial sampling

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

and the second second

- 1. Linear Interpolation
- Radon Transform (slant stack)
 - Slant-Stack Migration (Novotný, 1987)
- Spectral Methods
 - Spitz's method (Spitz, 1991)
 - Porsani's method (Porsani, 1999)
 - Gülünay's method (Gülünay, 2003)
- 4. Other
 - Wave-equation interpolation (Ronen, 1987)

Nonlinear interpolation (Martinson and Hopper, 1992)

- 1. Linear Interpolation
- 2. Radon Transform (slant stack)
 - Slant-Stack Migration (Novotný, 1987)
- 3. Spectral Methods
 - Spitz's method (Spitz, 1991)
 - Porsani's method (Porsani, 1999)
 - Gülünay's method (Gülünay, 2003)
- 4. Other
 - Wave-equation interpolation (Ronen, 1987)
 - Nonlinear interpolation (Martinson and Hopper, 1992)

Positive

 1 system of linear equations

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

and the second second

- 1. Linear Interpolation
- 2. Radon Transform (slant stack)
 - Slant-Stack Migration (Novotný, 1987)
- 3. Spectral Methods
 - Spitz's method (Spitz, 1991)
 - Porsani's method (Porsani, 1999)
 - Gülünay's method (Gülünay, 2003)
- 4. Other
 - Wave-equation interpolation (Ronen, 1987)

and the second second

 Nonlinear interpolation (Martinson and Hopper, 1992)

SPICE Research and Training Workshop IV, May 14–19, Cargèse, Corsica

Hierarchical Computation Scheme

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Hierarchical Computation Scheme

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

وجوير الطفقا والتيابية والاسترجار

Hierarchical Computation Scheme

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

an an of the fail of the fail of the second

Gülünay's Interpolation

A synthetic example

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Gülünay's Interpolation

A synthetic example

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Data

Green functions for the Marmara Sea region

SPICE Research and Training Workshop IV, May 14–19, Cargèse, Corsica

Gülünay's Interpolation

Marmara Sea database: GF component 1, source depth: 30 km

Conclusions

- Gülünay's interpolation succeeds.
- Diminishes by at least 50% the number of Green functions to calculate.

Further Work

- Test how sparse can the original data be.
- Implement a method for the 2-D case.

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica