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Is this the only model 
compatible with the data?

Deal et al. JGR 1999

Project some chosen model 
onto the model null space 
of the forward operator

Then add to original model.
The same data fit is 
guaranteed!



True model

Data

Estimated model

Forward problem
(exact theory)

Inverse problem
(approximate theory, uneven data 
coverage, data errors)
•Ill-posed (null space, continuity)
•Ill-conditioned (error propagation)

APPRAISAL
Model uncertainty



In the presence of a model null space, the cost 
function has a flat valley and the standard least-
squares analysis underestimates uncertainty.
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Realistic uncertainty for the given data



Data

Model

Multiple solutions are possible if the model does not 
continuously depend on the data, even for a linear problem.



Does it matter?

dlnVs

dlnVphi

dlnrho

SPRD6 (Ishii and Tromp, 1999)

Yes!

Input model is density from SPRD6 
(Resovsky and Trampert, 2002)



The most general solution of an 
inverse problem (Bayes, Tarantola)
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A full model space search should 
estimate )()()( mLmkm mρσ =

1. Exhaustive search
2. Brute force Monte Carlo (Shapiro and Ritzwoller, 2002)
3. Simulated Annealing (global optimisation with convergence 

proof)
4. Genetic algorithms (global optimisation with no covergence

proof)
5. Sample ρ(m) and apply Metropolis rule on L(m). This will result 

in importance sampling of σ(m) (Mosegaard and Tarantola, 
1995)

6. Neighbourhood algorithm (Sambridge, 1999)
7. Neural networks (Meier et al., 2007)



The model space is HUGE!

Draw a 1000 models per second where
m={0,1}

M=30 13 days
M=50 35702 years

Seismic tomography M = O(1000-100000)



The model space is EMPTY!

Tarantola, 2005



The curse of dimensionality
small problems M~30

)()()( mLmkm mρσ =
1. Exhaustive search, IMPOSSIBLE
2. Brute force Monte Carlo, DIFFICULT
3. Simulated Annealing (global optimisation with convergence 

proof), DIFFICULT
4. Genetic algorithms (global optimisation with no covergence

proof), ???
5. Sample ρ(m) and apply Metropolis rule on L(m). This will result 

in importance sampling of σ(m) (Mosegaard and Tarantola, 
1995), BETTER, BUT HOW TO GET A MARGINAL

6. Neighbourhood algorithm (Sambridge, 1999), THIS WORKS
7. Neural networks, PROMISING



The neighbourhood algorithm: 
Sambridge 1999

Stage 1:
Guided sampling of the model 
space.
Samples concentrate in areas 
(neighbourhoods) of better fit.



The neighbourhood algorithm (NA): 

Stage 2: importance sampling
Resampling so that sampling density reflects posterior

2D marginal 1D marginal



Advantages of NA

1. Interpolation in model space with 
Voronoi cells

2. Relative ranking in both stages (less 
dependent on data uncertainty)

3. Marginals calculated by Monte Carlo 
integration convergence check



NA and Least Squares consistency

As damping is reduced, LS 
solution converges towards 
most likely NA solution.

In the presence of a null 
space, LS solution will 
diverge, but NA solution 
remains unaffected.



Finally some tomography!
We sampled all models compatible with the data using 
the Neighbourhood Algorithm (Sambridge, GJI 1999)

Data: 649 modes (NM, SW fundamentals and overtones)
He and Tromp, Laske and Masters, Masters and Laske, Resovsky and Ritzwoller, 
Resovsky and Pestena, Trampert and Woodhouse, Tromp and Zanzerkia, Woodhouse 
and Wong, van Heijst and Woodhouse, Widmer-Schnidrig

Parameterization: 5 layers
[ 2891-2000 km]  [ 2000-1200 km]  [1200-660 km]

[660-400 km]   [400-24 km]

Seismic parameters
dlnVs, dlnVΦ, dlnρ, relative topography on CMB and 660



Back to density

Most likely model
SPRD6

Stage 1

Stage 2



Gravity filtered models 
over 15x15 degree equal area 
caps

Likelihoods in each cap are 
nearly Gaussian

Most likely model (above 
one standard deviation)

Uniform uncertainties
dlnVs=0.12 %

dlnVΦ=0.26 %

dlnρ=0.48 %



Likelihood of 
correlation
between
seismic
parameters

Evidence for 
chemical heterogeneity

Vs-VΦ

Half-height vertical bar 
corresponds to SPRD6



Likelihood of 
rms-amplitude
of seismic
parameters

Evidence for 
chemical heterogeneity

RMS density

Half-height vertical bar 
corresponds to SPRD6



The neural network (NN) approach: 
Bishop 1995, MacKay 2003

•A neural network can be seen as a non-
linear filter between some input and output
•The NN is an approximation to any 
function g in the non-linear relation d=g(m)
•A training set is used to calculate the 
coefficients of the NN by non-linear 
optimisation



1) Generate a training set:
D={dn,mn}

Network Input:
Observed or synthetic 
data for training

Neural Network

dn

p(m|dn,w)
Network Output:
Conditional probability
density
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2) Network training:3) Forward propagating a new 
datum through the trained 
network (i.e. solving the inverse 
problem)

dobs

p(m|dobs,w*)



Topography
(Sediment)

Moho Depth

220 km Discontinuity

400 km Discontinuity

Vpv, Vph, Vsv, Vsh, η

Vs (Vp, ρ linearly scaled)

+- 10 % Prem

+- 5 % Prem

Vp, Vs, ρ

7 layers
3 layers

Model Parameterization
8 layers



Example of a Vs realisation



Advantages of NN

1. The curse of dimensionality is not a 
problem because NN approximates a 
function not a data prediction!

2. Flexible: invert for any combination of 
parameters 

3. (Single marginal output)



Mean Moho depth [km]

Standard deviation σ [km]

Meier et al.
2007



Mean Moho depth [km]

CRUST2.0 Moho depth [km]

Meier et al.
2007



NA versus NN

• NA: joint pdf marginals by integration 
small problem

• NN: 1D marginals only (one network per 
parameter) large problem





oRicard et al. JGR 1993
oLithgow-Bertelloni and Richards 
Reviews of Geophys. 1998
oSuperplumes



Tackley, GGG, 2002





Finally let’s add some SPICE

• For years to come, full Monte Carlo 
together with 3D wave propagation is out of 
reach

• NA: iterative linearized inversion using 
adjoint kernels (Sieminski, Liu, Tromp) 
NA around model of last iteration

• NN: data base of all 3D simulations done 
worldwide can be used for training.
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