Solar-powered seismology: studying the Earth's interior based on correlations of ambient seismic noise

Nikolai Shapiro IPGP, France

<u>Collaborators</u>: Michel Campillo, Florent Brenguier, Laurent Stehly (LGIT, Grenoble)

Mike Ritzwoller, Yingjie Yang, Morgan Moschetti, (CU Boulder, Colorado, USA)

PBRZ

NCR

time (hours)

7.5 s Rayleigh wave

More information in publications at: http://www.ipgp.jussieu.fr/~nshapiro

Outline

- 1. Extraction of surface waves from correlations of seismic noise: introduction
- 2. Earthquake-based surface wave tomography and its limitations
- 3. Extraction of surface waves from correlations of seismic noise: data processing and example
- 4. Surface wave tomography from the ambient seismic noise
- 5. Tracing the origin of the seismic noise

Natural sources of seismic signals

one day of seismic record

Why using solar powered sources (*noise*)?

- 1. Measurements in absence of earthquakes:
 - improved resolution
 - repetitive measurements:
 - monitoring of temporal changes (volcanoes, fault zones)
- 2. Possibility to study the coupling between the Solid Earth, the Ocean, and the Atmosphere

from previous lecture by M. Campillo

Seismic coda and ambient seismic noise random seismic wavefields

Coda - result of multiple scattering on random inhomogeneities

Noise - seismic waves emitted by random ambient sources

Extraction of Green functions from random wavefields

from previous lecture by M. Campillo

Green function A->B ~ time correlation of fields in A and B

<u>Applications</u> with mechanical waves (under different names) : Helioseismology: Duvall et al. (1993)+.... Laboratory Acoustics: Weaver and Lobkis (2001)+... Sesimic coda waves: Campillo and Paul (2003)+... Marine acoustics: Roux et al., (2003)+... Ambient seismic noise: Shapiro and Campillo (2004)+...

Correlations of seismic noise are dominated by **fundamental mode surface waves** :

- sources acting on the Earth surface
- surface-to-surface Green function

from Roux et al., Snieder, ...

Outline

- 1. Extraction of surface waves from correlations of seismic noise: introduction
- 2. Earthquake-based surface wave tomography and its limitations
- 3. Extraction of surface waves from correlations of seismic noise: data processing and example
- 4. Surface wave tomography from the ambient seismic noise
- 5. Tracing the origin of the seismic noise

Seismic data

Body waves sample deep parts of the Earth

Surface waves sample the crust and upper mantle

Seismic surface-waves

- 1. Two types: Rayleigh and Love
- 2. Dispersion: travel times depend on period of wave
- 3. Two types of travel time measurements: phase and group

distribution of paths for dispersion measurements

Rayleigh and Love phase and group velocity measurements for more than 200,000 paths across the Globe

Dispersion maps

2D tomography: linear inversion of group and phase travel times on a sphere

global 3D tomographic model

nonlinear inversion of local dispersion curves

150 km

from Shapiro and Ritzwoller, 2002

50 km

Resolution of seismic models

- Distribution of earthquakes and seismic stations is inhomogeneous
- Resolution of seismic tomographic models is better in regions well covered by sources and receivers

Resolution of seismic models

Diffraction effects result in extended sensitivity kernels, especially for long paths

Short-period measurements are difficult to obtain for long paths

Resolution of seismic tomographic models is better in regions covered by short paths

How can we improve the resolution?

- 1. install more stations
- 2. new types of measurements

Earthscope USAarray

distribution of M>4 earthquakes during 1.5 years (July, 2003-December, 2004)

traditional approach: using **teleseismic surface waves** Alternative solution: making measurement from the **ambient seismic noise**

- extended lateral sensitivity
- sample only certain directions
- difficult to make short-period measurements

- localized lateral sensitivity
- samples all directions
- may allow many short-period measurements

Consequence: limited resolution

Improves resolution in the crust

Outline

- 1. Extraction of surface waves from correlations of seismic noise: introduction
- 2. Earthquake-based surface wave tomography and its limitations
- 3. Extraction of surface waves from correlations of seismic noise: data processing and example
- 4. Surface wave tomography from the ambient seismic noise
- 5. Tracing the origin of the seismic noise

Correlation of seismic noise: data processing

1. Raw data (January 18, 2002)

1. Raw data (January 18, 2002)

time (s)

time (s)

X 10+4

3. One-bit normalization

2. Filtered seismograms (0.01-0.025 Hz)

3. One-bit normalization

3. One-bit normalization

Cross-correlations from ambient seismic noise: ANMO - CCM

Cross-correlations from ambient seismic noise at US stations

from Shapiro and Campillo, 2004

Cross-correlation from ambient seismic noise in North-Western Pacific

from Shapiro and Campillo, 2004

Cross-correlation from ambient seismic noise in North-Western Pacific

Outline

- 1. Extraction of surface waves from correlations of seismic noise: introduction
- 2. Earthquake-based surface wave tomography and its limitations
- 3. Extraction of surface waves from correlations of seismic noise: data processing and example
- 4. Surface wave tomography from the ambient seismic noise
- 5. Tracing the origin of the seismic noise

Cross-correlation of seismic noise in California

Cross-correlation of seismic noise in California

cross-correlations of vertical component continuous records (1996/02/11-1996/03/10) 0.03-0.2 Hz

from Shapiro and Campillo, 2004

Comparison with signals from earthquakes

Examples of Rayleigh-wave dispersion curves

Measurements from two different months

Repetitive tomography

Resolution

dispersion maps Sierra Nevada 18 s cross-correlation Franciscan formation Peninsular Ranges Salinean block 35 -120 -115 2.55 2.65 2.75 2.80 2.85 2.95 3.00 3.10 3.20 3.50 group velocity (km/s)

dispersion maps

dispersion maps

7.5 s cross-correlation

Exploring the USArray data

Moschetti et al., work in progress

USArray: noise-based Rayleigh-wave group velocity maps

USArray: noise-based Rayleigh-wave group velocity maps

USArray: noise-based Rayleigh-wave group velocity maps

hotspot track

younger

3.8

plate motion

active

mantle plume

4.0

Noise-based surface-wave tomography in Europe

Stehly et al., work in progress

Noise-based surface-wave tomography in Europe

Crustal thickness beneath the European Alps

estimations from seismic reflection/refraction data

noise-based estimations

Waldhauser et al., 1998

Stehly et al. (work in progress)

Coherence Among Measurements -- 12 sec period?

As measured by the ability to fit data sets when doing tomography.....

from Yang et al., 2006

Coherence Among Measurements -- 16 sec period?

As measured by the ability to fit data sets when doing tomography.....

from Yang et al., 2006

Coherence Among Measurements -- 20 sec period?

As measured by the ability to fit data sets when doing tomography.....

from Yang et al., 2006

Coherence Among Measurements -- 30 sec period?

As measured by the ability to fit data sets when doing tomography.....

from Yang et al., 2006

Coherence Among Measurements -- 40 sec period?

As measured by the ability to fit data sets when doing tomography.....

Coherence Among Measurements -- Summary

As measured by the ability to fit data sets when doing tomography.....

Dispersion measurements from ambient noise are more internally consistent than measurements following earthquakes:

- + earthquake measurements are difficult to obtain below ~ 20 sec,
- + source processes, mislocation, etc. are eliminated.

Above ~30 sec, earthquake measurements are about as reliable as ambient noise measurements and the data sets can be combined without degrading the ambient noise measurements.

from Yang et al., 2006

Outline

- 1. Extraction of surface waves from correlations of seismic noise: introduction
- 2. Earthquake-based surface wave tomography and its limitations
- 3. Extraction of surface waves from correlations of seismic noise: data processing and example
- 4. Surface wave tomography from the ambient seismic noise
- 5. Tracing the origin of the seismic noise

Understanding the origin of the seismic noise

Motivations:

- Optimizing nose-based imaging
- Obtaining information about process in the ocean and the atmosphere

Fourier spectrum from one day of seismic noise (August 21, 2003; station OBN)

Origin of oceanic microseisms: traditional explanation

primary microseism is excited at frequencies corresponding to the spectrum of incoming oceanic gravity waves (periods of **10-20 s**)

secondary microseism is exited at doubled frequencies due to the nonlinear interaction between incident and reflected waves (periods of **5-10 s**)

both microseims originate in coastal areas

Isotropic distribution of sources: symmetric cross-correlation

from Stehly et al., 2006

Anisotropic distribution of sources: asymmetric cross-correlation

from Stehly et al., 2006

from Stehly et al., 2006

-200

-300

-500

-400

-100

0

Time [S]

100

200

300

400

500

10 - 20 s

from Stehly et al., 2006

Seismic noise sources (10-20 s)

Summer

from Stehly et al., 2006

Origin of oceanic microseisms: new results

- primary and secondary microseisms do not originate from the same areas
- primary microseism seems to partially originate in the deep oceans
- primary microseism is clearly related to the meteorological conditions in the ocean:

possibility to study climate-related phenomena from seismic data

• prominence of the primary microseism is strongly seasonal

the seasonality must be accounted for during travel time measurements for the tomography; better to use long time series (> 1 year)

• noise sources are not distributed homogeneously on the Earth's surface

source heterogeneity must be accounted for more accurate inversion of the waveforms emerging form noise cross-corelations

Conclusions

Seismic surface waves can be easily extracted from correlations of ambient seismic noise

- measurements without earthquakes
- improved resolution of seismic images of shallow parts of the Earth
- monitoring of seismic velocity variations within the media with an accuracy better than 0.1%

Possible applications:

- imaging of the crust and the uppermost mantle
- structure of sedimentary basins for seismic hazard
- seismic calibration for nuclear monitoring
- passive monitoring of temporal changes (volcanoes, fault zones, oil reservoirs, nuclear waste deposits ...)

Remaining problems:

- extraction of body waves from noise cross-correlations?
- optimizing the data processing
- going beyond the ray-theory-based inversion methods
- understanding the source of background seismic noise