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Natural sources of seismic signals

Atmospheric disturbances

Oceanic microseisms

Volcanoes

Earthquakes

EARTH’'S INTERNAL HEAT 1



one day of seismic record




one day of seismic record




one day of seismic record

X 10+4

| | | | | |
77 /8 79 80 81 82 83
X 1045

ballistic waves used in traditional tomography

(@)
4‘—‘-||||



one day of seismic record

noise

| | | | | |
17 /8 79 80
X 1045

ballistic waves used in traditional tomography

(@)
4‘—‘-||||



Why using solar powered sources (noise)?

1. Measurements in absence of earthquakes:
- improved resolution
- repetitive measurements:

monitoring of temporal changes (volcanoes, fault zones)

2. Possibility to study the coupling between the Solid Earth, the
Ocean, and the Atmosphere



from previous lecture by M. Campillo

Seismic coda and ambient seismic noise -
random seismic wavefields

Coda - result of multiple scattering
on random inhomogeneities noise sources

D I AT

Noise - seismic waves emitted by
random ambient sources



Extraction of Green functions from random wavefields

from previous lecture by M. Campillo

Green function A->B ~ time correlation of fields in A and B

Applications with mechanical waves (under different names) :
Helioseismology: Duvall et al. (1993)+....
Laboratory Acoustics: Weaver and Lobkis (2001)+...
Sesimic coda waves: Campillo and Paul (2003)+...
Marine acoustics: Roux et al., (2003)+...
Ambient seismic noise: Shapiro and Campillo (2004)+...

Correlations of seismic noise are dominated by

fundamental mode surface waves :
- sources acting on the Earth surface
- surface-to-surface Green function



from Roux et al., Snieder, ...

Correlation of waves emitted
by randomly distributed sources J\N‘—w
Results of correlations are constructive

for sources aligned with stations
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Stacking of different correlations results
in a signal with an arrival time corresponding
to the speed of waves traveling in the media
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traditional surface- Seismic data

wave tomography

surface waves

body waves
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traditional surface-
wave tomography

Seismic surface-waves

T I T T T
vertical

T
radial

T I T T T
transverse

2600 3000 3400
absolute time (s)

1. Two types: Rayleigh and Love
2. Dispersion: travel times depend on period of wave

3. Two types of travel time measurements: phase and group



traditional surface- distribution of paths for
wave tomography dispersion measurements

Rayleigh and Love phase and group velocity measurements
for more than 200,000 paths across the Globe



traditional surface- from Ritzwoller et al., 2002
wave tomography - -

Dispersion maps

2D tomography:
linear inversion of group
and phase travel times
on a sphere
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traditional surface-

global 3D tomographic model
wave tomography

nonlinear inversion of local dispersion curves
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from Shapiro and Ritzwoller, 2002



Resolution of seismic models

v'Distribution of earthquakes and seismic stations is
inhomogeneous

v'Resolution of seismic tomographic models is better in regions
well covered by sources and receivers




Resolution of seismic models

Diffraction effects result in
extended sensitivity kernels,
especially for long paths

Short-period measurements are
difficult to obtain for long paths

Resolution of seismic tomographic models is
better in regions covered by short paths

How can we improve the resolution?
1. install more stations

2. new types of measurements



Earthscope USAarray

distribution of M>4 earthquakes during 1.5 years (July, 2003-December, 2004)
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traditional approach:
using
teleseismic surface waves

Alternative solution:
making measurement from
the ambient seismic noise

B
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o extended lateral sensitivity

 sample only certain directions

o difficult to make short-period
measurements

Consequence: limited resolution

e localized lateral sensitivity

 samples all directions

e may allow many short-period
measurements

Improves resolution in the
crust
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Correlation of seismic noise: data processing
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2. Filtered seismograms (0.01-0.025 Hz)
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1.Raw data (January 18,2002)
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2. Filtered seismograms (0.01-0.025 Hz)
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3.0ne-bit normalization
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3.0ne-bit normalization

4.Compute cross-correlation
5.Stack results for 30 days
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I Cross-correlations from ambient seismic noise: ANMO - CCM

cross-correlations from 30 days of continuous
vertical component records (2002/01/10-2002/02/08)
Ny
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Cross-correlations from ambient seismic noise at US stations

50°N

frequency-time analysis of
broadband cross-correlations
computed from 30 days of
continuous vertical
component records

40°N

30°N

time (s) ' 000 0 | time (s) ' 7000

grooup velocity (km/s)
grooup velocity (km/s)

grooup velocity (km/s)

20

20

50 100 10 20 50 100 10 50
period (s) CMB-TUC period (s) ANMO-CCM period (s)

100

CCM-HRV

from Shapiro and Campillo, 2004




I Cross-correlation from ambient seismic noise in North-Western Pacific

broadband cross-correlation

computed from 30 days of
continuous vertical
component records
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I Cross-correlation from ambient seismic noise in North-Western Pacific

broadband cross-correlation

computed from 30 days of
continuous vertical
component records
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Cross-correlation of seismic noise in California

18 s global surface-wave measurements
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Cross-correlation of seismic noise in California

cross-correlations of vertical component continuous records (1996/02/11-1996/03/10)
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Comparison with signals from earthquakes

event 1 - PHL event 2 - MLAC
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Examples of Rayleigh-wave dispersion curves
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Measurements from two different months
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Repetitive tomography
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Resolution
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dispersion maps I

18 s cross-correlation
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dispersion maps I
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dispersion maps I

7.5 s cross-correlation
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Exploring the USArray data

Moschetti et al., work in progress




USArray: noise-based Rayleigh-wave group velocity maps
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USArray: noise-based Rayleigh-wave group velocity maps
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USArray: noise-based Rayleigh-wave group velocity maps
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Noise-based surface-wave tomography in Europe

Stehly et al., work in progress




Noise-based surface-wave tomography in Europe
51° 4 N Stehly et al., work in progress
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depth [k

Crustal thickness beneath the European Alps

estimations from seismic
reflection/refraction data

noise-based estimations

Waldhauser et al., 1998

Stehly et al. (work in progress)

Moho Depth




Coherence Among Measurements -- 12 sec period?

As measured by the ability to fit data sets when doing tomography.....

Misfit to Earthquake Measurements  Misfit to Ambient Noise Measurements
From Earthquake Tomography From Ambient Noise Tomography
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from Yang et al., 2006



Coherence Among Measurements -- 16 sec period?

As measured by the ability to fit data sets when doing tomography.....

Misfit to Earthquake Measurements  Misfit to Ambient Noise Measurements
From Earthquake Tomography From Ambient Noise Tomography
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Coherence Among Measurements -- 20 sec period?

As measured by the ability to fit data sets when doing tomography.....

Misfit to Earthquake Measurements  Misfit to Ambient Noise Measurements
From Earthquake Tomography From Ambient Noise Tomography
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Coherence Among Measurements -- 30 sec period?

As measured by the ability to fit data sets when doing tomography.....

Misfit to Earthquake Measurements  Misfit to Ambient Noise Measurements
From Earthquake Tomography From Ambient Noise Tomography
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Coherence Among Measurements -- 40 sec period?

As measured by the ability to fit data sets when doing tomography.....

Misfit to Earthquake Measurements  Misfit to Ambient Noise Measurements
From Earthquake Tomography From Ambient Noise Tomography
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Coherence Among Measurements -- Summary

As measured by the ability to fit data sets when doing tomography

Dispersion measurements from
ambient noise are more internally
consistent than measurements
following earthquakes:

+ earthquake measurements
are difficult to obtain
below ~ 20 sec,

+ source processes, mislocation,
etc. are eliminated.

misfit (st dev in sec)

Above ~30 sec, earthquake measurements
are about as reliable as ambient noise
measurements and the data sets can be
combined without degrading the ambient
noise measurements.

from Yang et al., 2006

N (4] B
o [=] o

-
o
TTTTTTTTTTT

w
o
TTTT

ambient noise

e e S e B [ A (I

o
TTT

10

20 30
period (sec)




Outline

Extraction of surface waves from correlations of seismic noise: introduction
Earthquake-based surface wave tomography and its limitations

Extraction of surface waves from correlations of seismic noise:; data
processing and example

Surface wave tomography from the ambient seismic noise

Tracing the origin of the seismic noise



Understanding the origin of the seismic noise

Motivations:
» Optimizing nose-based imaging
» Obtaining information about process in the ocean and the atmosphere

Fourier spectrum from one day of seismic noise (August 21, 2003; station OBN)

atmosphere oceanic oceanic
solid earth infra-gravity waves microseisms
coupling
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Origin of oceanic microseisms: traditional explanation

incident wave

oceanic gravity waves

>
flected
% - reflected wave :

> coastal area
coupling between gravity
waves and sea floor
generation of microseisms

deep ocean
no wave-floor interaction

primary microseism is excited at frequencies corresponding to the
spectrum of incoming oceanic gravity waves (periods of 10-20 s)

secondary microseism is exited at doubled frequencies due to the
nonlinear interaction between incident and reflected waves

(periods of 5-10 s)

both microseims originate in coastal areas




Tracing the origin
of the seismic noise

Isotropic distribution of sources:
symmetric cross-correlation
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Anisotropic distribution of sources:
asymmetric cross-correlation
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Tracing the origin
of the seismic noise
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Tracing the origin
of the seismic noise
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Tracing the origin

of the seismic noise
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Seismic noise sources (10-20 s)

seismic results Winter
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Origin of oceanic microseisms: new results

 primary and secondary microseisms do not originate from the same areas
e primary microseism seems to partially originate in the deep oceans

» primary microseism is clearly related to the meteorological conditions in
the ocean:

possibility to study climate-related phenomena from seismic data
e prominence of the primary microseism is strongly seasonal

the seasonality must be accounted for during travel time
measurements for the tomography; better to use long time series (>
1 year)

* noise sources are not distributed homogeneously on the Earth’s surface

source heterogeneity must be accounted for more accurate
inversion of the waveforms emerging form noise cross-corelations



Conclusions

Seismic surface waves can be easily extracted from correlations of
ambient seismic noise
- measurements without earthquakes
- improved resolution of seismic images of shallow parts of the Earth
- monitoring of seismic velocity variations within the media with
an accuracy better than 0.1%

Possible applications:
- imaging of the crust and the uppermost mantle
- structure of sedimentary basins for seismic hazard
- seismic calibration for nuclear monitoring
- passive monitoring of temporal changes
(volcanoes, fault zones, oil reservoirs, nuclear waste deposits ...)

Remaining problems:
- extraction of body waves from noise cross-correlations?
- optimizing the data processing
- going beyond the ray-theory-based inversion methods
- understanding the source of background seismic noise
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