Simulated and Analog Results in Underwater Acoustics

Philippe Roux

LGIT, CNRS, Universite Joseph Fourier, Grenoble Scripps Institution of Oceanography, UCSD, La Jolla

Outline

- -Introduction to underwater acoustics
- -Time reversal in the shallow ocean
- -Theory and Simulation in shallow water acoustics
- -Exploratory works based on laboratory self-adaptive experiments

Generic sound speed structure

The Complex Ocean Environment

- The ocean is a complex inhomogenous medium
 - Complicated bathymetry
 - $c_{\omega}(z) = c_{\omega}(p(z),T(z),S(z))$ often unknown
 - Layered sediments
 - Dynamic and ever-changing
- Deep ocean propagation dominated by refraction
- Shallow ocean propagation dominated by boundary interactions

- D. Convergence zone
- E. Bottom bounce
- F. Shallow water

Bottom attenuation

• Index of refraction $n\cos\theta = cte$

$$\cos\theta_c = \frac{C_w}{C_b}$$

- Acoustic propagation above critical angle (θ_{c}) refracts into bottom and is attenuated

Shallow ocean acoustics challenge

- Boundaries retain information in the waveguide over long ranges
- Can we manipulate acoustic field at long ranges using vertical arrays without knowledge of the complex medium?

Time reversal in the shallow ocean

Experimental TR in the Shallow Ocean (1996)

Time Reversal Experiment (2003)

Time Reversal Experiment (2003)

Simultaneous Focus

Simultaneous Multiple TR Focus

0.02

0.04

0.06

time (s)

0.08

0.1

0.02

0.06

time (s)

0.04

0.08

0.1

3.5 kHz SRA

3.5 kHz SRA Deployment

SRA Buoy, PC/LAN, Antennae

Vertical Receive Array (VRA)

Theory and Simulation in Shallow Water Acoustics

Physics of Shallow Ocean Acoustic Propagation

Physics governed by wave equation:

$$\left(\nabla^2 - \left(\frac{1}{c^2(z)}\right)\frac{\partial^2}{\partial t^2}\right)P(\vec{r},t) = -S(t)\delta^{(3)}\left(\vec{r}-\vec{r}_s\right)$$

• Work in frequency domain and assume azymuthal symmetry (coordinate r,z)

$$\left(\nabla^2 + \frac{\omega^2}{c^2(z)}\right)\widetilde{P}(r, z, \omega) = -\widetilde{S}(\omega)\left(\frac{\delta(r - r_s)}{2\pi r}\right)\delta(z - z_s)$$

• Medium is range-independent \implies separation of variables r and z

$$\widetilde{P}(r,z) = \int_{-\infty}^{\infty} k \, dk \, g(k,z,z_s) \, H_0^1(k(r-r_s))$$
$$\frac{d^2 g}{dz^2} + \left(\frac{\omega^2}{c^2(z)} - k^2\right)g = -\frac{1}{2\pi}\delta(z-z_s)$$

can be solved numerically....

real(k)

Physics of Shallow Ocean Acoustic Propagation

• Physics governed by wave equation:

$$\left(\nabla^2 - \left(\frac{1}{c^2(z)}\right)\frac{\partial^2}{\partial t^2}\right)P(\vec{r},t) = -S(t)\delta^{(3)}\left(\vec{r}-\vec{r}_s\right)$$

• Work in frequency domain and assume azymuthal symmetry (coordinate r,z)

$$\left(\nabla^2 + \frac{\omega^2}{c^2(z)}\right)\widetilde{P}(r, z, \omega) = -\widetilde{S}(\omega)\left(\frac{\delta(r - r_s)}{2\pi r}\right)\delta(z - z_s)$$

• Medium is range-independent \implies separation of variables r and z

$$\widetilde{P}(r,z) = \int_{-\infty}^{\infty} k \, dk \, g(k,z,z_s) \, H_0^1(k(r-r_s))$$
$$\frac{d^2 g}{dz^2} + \left(\frac{\omega^2}{c^2(z)} - k^2\right)g = -\frac{1}{2\pi}\delta(z-z_s)$$

Waveguide propagation + long range
 modal decomposition

$$g(k,z) = \sum_{n=1}^{N} a_n(k) \Phi_n(z)$$
$$\frac{d^2 \Phi_n}{dz^2} + \left(\frac{\omega^2}{c^2(z)} - k_n^2\right) \Phi_n(z) = 0$$

Summary of mode properties

- Modes arise from constructive interference
 in waveguide
- Eigen-value solutions to depth equation
- Mode shapes and wavenumbers depend on c (z) = [c_{ω}(z) c_b(z)]
- Orthogonal over half space below water surface
- Travel at different velocities so that they disperse with time/range
- Attenuate with range due to bottom interactions
- Invariant in range

Modal propagation

 Pressure field : Green's function convolved by source spectrum

$$\tilde{P}_q(z_s, r, \omega) = G(z_q, z_s, r - r_s, \omega) \,\tilde{S}(r_s, z_s, \omega)$$

Acoustic field propagates as depth dependent modes

VRA

Model consistency : modes and rays

The most advanced simulation: Parabolic Equation

$$\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = \left(\frac{\partial}{\partial x} - \frac{1}{c} \frac{\partial}{\partial t}\right) \left(\frac{\partial}{\partial x} + \frac{1}{c} \frac{\partial}{\partial t}\right)$$

+ paraxial approx.
$$\implies \text{ small angle PE (Tappert, 1977)}$$
$$\implies \text{ high-angle PE + energy conservation}$$

(Collins, 1991)

Simulation results

Comparison with data

What simulation to use?

Gain in efficiency : coupling between simulations

Shallow water vs Deep water propagation

Depth (m)

Acoustic propagation dominated by reflection

Shallow water Range=10 km Freq=75-125 Hz

Acoustic propagation dominated by refraction

	Water depth=5000 m
Deep water (Range=2000 km
	Freq=20-40 Hz

Matched-field processing (MFP)

Time Reversal vs Matched-Field Processing

Focused field (1 kHz, 6 km, 60 m)

Time-reversal (TR) vs Matched-field processing (MFP)

- MFP: $|W^{+}(r)D(r_{s})|^{2} = W^{+}(r)K(r_{s})W(r)$
- $\mathsf{TR:} \quad G^{+}(r_{_{trm}};r_{_{s}})G(r; r_{_{trm}})$

- W : Normalized computer generated replica fields
- G : Ocean generated replica field (Green's function)

TR versus MFP ?

back at source

! MFP does not work at 3 kHZ for L >2 km !

Exploratory works based on laboratory self-adaptive experiments

Why laboratory experiments ?

- Signal processing techniques for detection, communications, and tomography require an accurate model of the environment
 - Complicated by multi-path arrivals \rightarrow too many parameters
- Fluctuations due to wind, surface waves, and source motions complicate signal processing
- Characterizing the ocean environment is expensive, impractical, and often impossible

Outline

Mode extraction over a single partial-spanning vertical array

- Use a single partial-spanning vertical array and range sampled field to extract modes without modeling
- Use modes to depth shift Time-Reversal focus

Huygens principle applied to Time-Reversal imaging

 Use the pressure response between 2 vertical arrays to produce Time-Reversal foci at arbitrary locations without knowledge of the environment

Ultrasonic experiment

 We test our theories in a scaled down waveguide at ultrasonic frequencies

Focal depth shifting of a time reversal mirror in a range-independent waveguide

TR in the shallow ocean

Pressure field on array $P_q(z',r,\omega) = G(z_q,z',r,\omega)\tilde{S}(\omega)$

 $\frac{\text{Modal depth-dependence}}{P_q(z',r,\omega) = \sum_{m=1}^{N} \phi_m(z_q,\omega) \phi_m(z',\omega) \psi_m(r,\omega)}$

 $\frac{\text{Range-dependent phase}}{\psi_m(r,\omega) \equiv \left(\frac{i}{\sqrt{8\pi}\rho(z_s)} \right) \frac{e^{-i(k_m(\omega))r}}{\sqrt{k_n(\omega)r}} \tilde{S}(\omega)$

 $\sum_{q=1}^{N_q} \frac{\text{Time-reversal focus}}{G(z_q, z, r, \omega)} P_q^*(z', r, \omega) \approx \frac{\delta(z - z')}{\delta(z - z')}$

Modal remodulation depth shifting

Frequency-wavenumber (f-k) structure

 $F_c = 600 kHz$ $\Delta F = 400 kHz$ $\lambda_c = 2.5 mm$

dB

-15

-30

300

1000

200

Mode extraction

Modes are isolated (masked) and extracted individually using SVD

Depth shifted TR foci Use extracted modes to remodulate mask 800 • Frequency (kHz) regions of f-k structure 600 **Inverse Fourier Transform** 400 $P_q(z',r,t) = \frac{1}{2\pi} \iint d\omega dk \, \tilde{P}_q(z',k,\omega) e^{i(kr+\omega t)}$ 0 0 Can produce depth shifted TR foci at all • original source ranges

Experimental DS results at many depths

Experimental DS at many ranges

Depth shifted TR foci are produced at any depth at all initial source ranges

Conclusions

Self-adaptive ocean acoustics

Extract information from the data and apply manipulations to the same data set without modeling or inversions

- Time reversal
 - No information other than detection, requires a source
- Dispersion based mode extraction
 - Works on partial-spanning arrays
 - Requires moving source
- Extracted modes can be applied to TR
 - Focal spot manipulation
 - Communications and sonar applications

Huygens principle applied to TR imaging

Problem definition

- Shallow ocean range independent, stationary waveguide
- A pair of vertical interaversal requires parsignaby distance R
- Use $G(\mathbf{z}_i, \mathbf{z}_j, \mathbf{R}) \implies \text{from } \mathbf{z}_i, \mathbf{z}_j, \text{ purce location}$
- Imaging at (z', z', R')

Huygens Principle: Estimating Down Range Greens Function

Given $G(z_i, z_j, R)$: Use Huygens principle to propagate to 4R: $G(z_i, z_j, R) \otimes G(z_j, z_k, R) \otimes G(z_k, z_l, R) \otimes G(z_l, z_m, R) \approx G(z_i, z_m, 4R)$ 3R)

Down Range Imaging

- Choose image depth
- Approximate $\mathbf{G} \approx \mathbf{G}(\mathbf{z}_{i}, \mathbf{z}_{m}=\mathbf{z}_{s}, \mathbf{4R})$
- Perform imaging: $G(\mathbf{z}_i, \mathbf{z}_m = \mathbf{z}_s, 4\mathbf{R}) \Rightarrow G(\mathbf{z}_i, \mathbf{z}_m = \mathbf{z}_s, 4\mathbf{R})^*$

H. C. Song et al., J. Acoust. Soc. Am. 103 (6), June 1998

Down Range Imaging: Combining Huygens Principle with Range Shifting

By combining Greens function iteration with range shifting it is possible to cover all ranges and depths down range

Simulated Imaging Results

Imaging using iterated signal with frequency dependent range shifting

Experimental Imaging Results

