A SPICE benchmark for global tomographic methods and

Test of Global tomographic models

Yilong Qin, Yann Capdeville, Valerie Maupin, Jean-Paul Montagner

Lapo Boschi and Thorsten Becker

Part I

Why we do the Benchmark?

Factors affecting the results of seismic tomography

- Approximation of forward computation
- Ray coverage
- Correlation length
- grid size
- Damping coefficients
- How the different datasets are weighted?
- Sensitivity kernel is 1D, 2D or 3D
- Selection of starting reference model?

Multi-solution of seismic inversion

w.spice-rtn.org

Part I

- Objectives of Benchmark
- 1. understand the resolving properties of specific imaging algorithms
- 2. how current imaging techniques are limited by approximations in theory and by the data quality and coverage.

Procedure of Benchmark

1.Preliminary Benchmark: To make sure that the computation precision, acquisition geometry, data format, sampling rate are good for tomography test

- Minimum period 50s
- Simple isotropic model
- No topography, ocean, ellipticity

2. Benchmark

- Minimum period 32s
- Complex anisotropic model (designed by *Valerie Maupin*)
- With gravity, topography, ocean, ellipticity
- Constant Moho interface
- Use spectral element method (SEM)

3. Procedure

Source and station distribution of preliminary benchmark

27 Events distribution

256 stations distribution

Inversion results using Automated Multi-mode inversion of surface and S waveforms by Sergei Lebedev (Lebedev, et al., 2005).

Preliminary Benchmark

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Source and station distribution of second benchmark

256 stations distribution

29 Events distribution (magnitude is more homogeneous)

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Inversion of Second Benchmark dataset

- 1. Automated multimode Inverison (AMI) (Sergei Lebedev)
- 2. Phase-velocity measurement + regionalization+depth inversion (already know the input model)
- (1). use Roller-Coaster method to calculate the phase velocity for each source-receiver path (Beucler, et al., 2003)
- (2). use CLASH method to calculate the anisotropic phase velocity distribution for different period (Beucler and Montagner, 2006)
- (3). 1D Depth inversion (11 periods from 45s to 315s)

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

man and the second and the second

Input models

shear velocity variation from 1-D +6% -6% Depth= 70 km

shear velocity variation from 1-D +6% -6% Depth= 160km

shear velocity variation from 1-D +6% Depth= 300 km

-6%

shear velocity variation from 1-D

Output model of AMI by Sergei Lebedev (only isotropic)

70km

160km

300km

520km

the Anton Many and

+6% Depth= 161 km

shear velocity variation from 1-D +6% Depth= 302 km

-6%

Depth= 520 km

e-rtn.org

shear velocity variation from 1-D -6% +6%

Depth=71 km

shear velocity variation from 1-D -5% +5%

Depth= 65 km

shear velocity variation from 1-D

Depth= 164 km

shear velocity variation from 1-D

Depth= 302 km

CLASH

+5%

+3%

-5%

-3%

shear velocity variation from 1-D +6% -6%

Depth= 160km

+6% -6% Depth= 300 km Input model

shear velocity variation from 1-D -6% +6%

Depth= 161 km

AMI

SPICE Re

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica www.spice-rtn.org

Third Benchmark (going on)

- use Moho topograhy
- Array surface-wave tomography (spacing 70km)
- Increase global station density
- 2D crustal velocity
- Variation of azimuthal anisotropy
- Minimum period 32s

Global station coverage (spacing 500km)

www.spice-rtn.org

Part II

Test of Global tomographic model

Yilong Qin, Yann Capdeville, Jean-Paul Montangner, Lapo Boschi and Thorsten Becker

Data are not to be used to create a model, but, instead, to falsify models.

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Albert Tarantola (Nature, 2006)

i.sdice-rth.org

Objectives

• how well different tomographic models can explain the overtones and fundamental modes of surface waves.

Correlation coefficients: x1= 0.9817 R1= 0.9791 X2= 0.7715 R2= 0.9075

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica www.spice-rtn.org

Configuration of Test

- Minimum period is 100s
- •Use Deep events with magnitude (Mw) is about 7
- •The duration of events is less than 20s
- •Length of traces is 10500s (Include R2, L2)
- •Three components (LHZ, LHR,LHT)
- •Currently tested model: S20RTS, SAW24B16, SB4L18, Smean and Princeton-05

Currently tested models

•S20RTS: derived by inverting Rayleigh wave dispersion , body-wave Travel time, and normal-mode Splitting data

•SAW24B16: derived with handpicked transverse component waveforms,

• SB4L18: Scripps "high-resolution" model. Derived from surface wave phase velocity, free oscillation structure coefficients and long-period body wave absolute and differential travel times.

•Smean: average of S20RTS, SAW24B16, and SB4L18

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

• Princeton-05: derived using finite-frequency tomography of body waves

.spice-rth.org

Comparison of different models at depth of 150km

Numerical computation

- •Coupling SEM method (Capdeville et al., 2003)
- Average CRUST2.0 for anti-aliasing
- •1D anisotropic PREM model as reference model
- •incoporate the Moho topography

•The variation of Vp and density is scaled to perturbations of Vs by factor 0.5 and 0.4

Event I

LHZ

China.Russia Border event

Depth=645km

LHT

Path coverage for different component

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

www.spice-rtn.org

mm

	Smean	S20RTS	SAW24B16	SB4L18	Princeton-05	PREM	
X1	0.956	0.949	0.910	0.942	0.911	0.825	
R1	0.918	0.943	0.927	0.889	0.865	0.770	
X2	0.864	0.850	0.833	0.837	0.736	0.705	
R2	0.808	0.842	0.820	0.806	0.220	0.530	

LHZ: 59 traces

	Smean	S20RTS	SAW24B16	SB4L18	Princeton-05	PREM	
G1	0.964	0.964	0.948	0.965	0.939	0.912	LHT :total 25 traces
L1	0.968	0.956	0.943	0.945	0.872	0.793	
G2	0.890	0.888	0.870	0.877	0.756	0.735	
L2	0.915	0.799	0.842	0.888	0.5684	0.416	

	Smean	S20RTS	SAW24B16	SB4L18	Princeton-05	PREM	
X1	0.911	0.906	0.899	0.896	0.881	0.832	I HR: total 25 traces
R1	0.900	0.917	0.914	0.868	0.866	0.788	
X2	0.782	0.770	0.759	0.763	0.641	0.551	
R2	0.863	0.8716	0.818	0.852	0.185	0.402	

Average Correlation coefficients for Event China.Border

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica www.spice-rtn.org

Event II

LHZ (76 traces)

LHT (20 traces)

Event: Brazil, 2003

Depth: 556km

LHR (25 traces)

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

	Smean	S20RTS	SAW24B16	SB4L18	PREM
X1	0.948	0.942	0.935	0.937	0.8334
R1	0.919	0.950	0.934	0.868	0.7430
X2	0.848	0.836	0.783	0.820	0.646
R2 ,	0.797	0.874	0.810	0.784	0.581

76 traces

	Smean	S20RTS	SAW24B16	SB4L18	PREM
X1	0.95	0.953	0.958	0.956	0.9123
R1	0.892	0.928	0.902	0.845	0.7800
X2	0.852	0.859	0.842	0.838	0.6881
R2	0.821	0.861	0.870	0.801	0.5883

25 traces

	Smean	S20RTS	SAW24B16	SB4L18	PREM
X1	0.877	0.872	0.881	0.884	0.828
R1	0.955	0.939	0.917	0.932	0.802
X2	0.762	0.756	0.712	0.725	0.651
R2 ,	0.890	0.893	0.774	0.854	0.454

20 traces

Average correlation coefficients

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

www.spice-rtn.org

Mannam

Perspective

1. Try more deep earthquakes

- Magnitude Mw between 7.1 and 7.5
- Source depth >500km
- Duration <20s

Distribution of deep earthqukes (from Harvard CMT)

2. Try more models

- geodynamic models
- Recent new models

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Preliminary Conclusions

- Correlation coefficients of X1 (G1) and R1 (L1) are higher than X2 (G2) and R2 (L2)
- for **Smean, S20RTS, SAW24B16, SB4L18**, the correlation coefficients have no obvious difference
- 3D models have better waveform fitting than anisotropic **PREM**

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

annow Manual and the state of t

Depth Inversion using 11 periods: 45s, 55s, 68s, 84s, 103s, 127s, 156s, 192s, 220s, 240s, 273s.

Depth Inversion using 11 periods: 45s, 55s, 68s, 84s, 103s, 127s, 156s, 192s, 220s, 240s, 273s.

