Overlapping Multidomain Chebyshev Method

Peter Daněček Géza Seriani

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

where the second s

Overview

- OMDC method
- Free Surface Boundaries
- Time schemes
- Accuracy Analysis
- Conclusion

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Numerical method (1)

Overlapping Multidomain Chebyshev Method

N = 6

Numerical approximation

Example: Chebyshev, N=6

Chebyshev polynomials (up to order N=6)

Corresponding cardinal functions

www.spice-rtn.org

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Numerical method (2)

Design goals

- Simulation of 3-D large scale models
- Algorithm with good scalability for parallel computation
- Structured method with implicit topology
- Strong formulation
- Spherical geometry for continental & global scale

≻ <u>Why?</u>

- Earth models on larger scales are smooth
- grid generation and explicit topology are avoided
- save computational resources for higher resolution, more runs, etc.

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica www.spice-rtn.c

Spherical geometry

- Uniform mapping by continuous functions for the whole computational domain
- Elastic equations solve directly in spherical coordinates
- Coordinate lines remain orthogonal with respect to each other
- Only few geometry parameters
 need to be pre-calculated

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

v.sdice-rth.org

Spherical elastodynamic system

$$\begin{split} \partial_t \epsilon_{rr} &= \partial_r v_r \\ \partial_t \epsilon_{\theta\theta} &= \frac{1}{r} \partial_\theta v_\theta + \frac{1}{r} v_r \\ \partial_t \epsilon_{\phi\phi} &= \frac{1}{r\sin\theta} \partial_\phi v_\phi + \frac{1}{r} v_r + \frac{\cot\theta}{r} v_\theta \\ \partial_t \epsilon_{r\theta} &= \frac{1}{2} \left(\partial_r v_\theta - \frac{1}{r} v_\theta + \frac{1}{r} \partial_\theta v_r \right) \\ \partial_t \epsilon_{r\phi} &= \frac{1}{2} \left(\partial_r v_\phi - \frac{1}{r} v_\phi + \frac{1}{r\sin\theta} \partial_\phi v_r \right) \\ \partial_t \epsilon_{\theta\phi} &= \frac{1}{2} \left(\frac{1}{r} \partial_\theta v_\phi - \frac{\cot\theta}{r} v_\phi + \frac{1}{r\sin\theta} \partial_\phi v_\theta \right) \\ \rho \partial_t v_r &= \partial_r \sigma_{rr} + \frac{1}{r} \partial_\theta \sigma_{r\theta} + \frac{1}{r\sin\theta} \partial_\phi \sigma_{r\phi} + \frac{1}{r} \left[\cot\theta (\sigma_{\theta\theta} - \sigma_{\phi\phi}) + 3\sigma_{\theta\phi} \right] + f_\theta \\ \rho \partial_t v_\phi &= \partial_r \sigma_{r\phi} + \frac{1}{r} \partial_\theta \sigma_{\theta\phi} + \frac{1}{r\sin\theta} \partial_\phi \sigma_{\phi\phi} + \frac{1}{r} \left[3\sigma_{r\phi} + 2\cot\theta \sigma_{\theta\phi} \right] + f_\phi \end{split}$$

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica www.spice-rtn.org

Free boundary condition: characteristics

- One-dimensilize problem (normal to boundary)
- Find eigenvectors and eigenvalues
 > Eigenvalues correspond to seismic velocities
 - Eigenvector elements are the characteristics (non-propagating, incoming. outgoing)
- Apply boundary condition and preserve outgoing characteristics

Free boundary condition: characteristics

$$\sigma_{11}^{\text{new}} = \sigma_{11}^{\text{old}} - \frac{\lambda}{\lambda + 2\mu} \sigma_{33}^{\text{old}}$$

$$\sigma_{22}^{\text{new}} = \sigma_{22}^{\text{old}} - \frac{\lambda}{\lambda + 2\mu} \sigma_{33}^{\text{old}}$$

$$\sigma_{33}^{\text{new}} = 0$$

$$\sigma_{12}^{\text{new}} = \sigma_{12}^{\text{old}} \quad \text{[unchanged]}$$

$$\sigma_{13}^{\text{new}} = 0$$

$$\sigma_{23}^{\text{new}} = 0$$

$$v_{2}^{\text{new}} = v_{2}^{\text{old}} - \frac{1}{\rho V_{s}} \sigma_{23}^{\text{old}}$$

$$v_{3}^{\text{new}} = v_{3}^{\text{old}} - \frac{1}{\rho V_{p}} \sigma_{33}^{\text{old}}$$

stress and velocities needed at same temporal level

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica www.spice-rtn.org

Free surface

Order Elements Points Processors N = 8 32 x 32 x 40 226 x 226 x 282 64

Space

Grid spacing Model Courant $\phi = \phi = -5^{\circ}.. + 5^{\circ}$ $0.17..1.08 \times 10^{-3}$ $V_{\rm S} = 0.1, V_{\rm P} = 0.2$ c < 0.2ca. 10 ppw

r = 0.8 .. 1.0

Scheme

Source Boundaries Velocity-stress, Runge-Kutta 4th order Explosion at r = 0.96, off center Free surface, Absorbing layer

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

- Mahalimman And - ---

Application setup

•	Processors	8 x 8 x 1		
•	Space	depth = 0400 km		
		$\phi = \phi = -8^{\circ} \dots + 8^{\circ}$		
•	Vmax	ca. 10 km/h		
•	Time scheme	Runge-Kutta 4th order		
	Order	N = 6	N = 8	N = 10
	Elements	120 ² x28	88 ² x24	68 ² x16
	Points	602 ² x142	618 ² x170	614 ² x146
	Min.spacing	1.0 km	0.75 km	0.58 km
	Stability c _{CLF}	0.2		
	Timestep [s]	0.02	0.015	0.0115
	No. timestep	15000	20000	26000
	for 300s simulation			

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

mm

Application setup

- The stability constant c_{CLF}=0.2 may be too conservative
- The order (N=6,8,10 vs. 4) decrease minimum grid point distance
- The 4th order Runge-Kutta time integration scheme requires the equations to be evaluated 4 times
- Vertical stretching & multiple resolution would relax the stability condition
- Code optimization and memory access pattern should have major impact

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

water hard the second and the second and the second and the second s

Time-stepping schemes

symplectic scheme:

- energy conservation
- 3 substeps
- Propagation for 125 λ
- c = 1.65
 little dispersion

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Free surface, 1D model

Order Elements Points

Model size

Grid spacing

N = 8 64 x 48 x 18 450 x 338 x 128

 $\varphi = 20^{\circ}, \varphi = 15^{\circ}$ Depth = 600km 1234..6907km

Vel. Model

Courant Scheme sp6 [Morelli & Dziewonski 1993] c < 0.1 velocity-stress, leap-frog 2th order

Source Boundaries Explosion at 40km depth Free surface Absorbing layer

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Free surface, 1D model

QuickTime™ and a TIFF (PackBits) decompressor are needed to see this picture.

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

and the second district and the second

Accuracy analysis

- Orients on SPICE code validation: WP1_HSP1a WP1_HHS1 (surface)
- Cartesian kernel
- Periodic boundaries
- Absorbing boundary only at the bottom of the WP1_HHS1 model

- Trade off between spectral order and computational costs
- Evaluate the boundary conditions

[Peter Moczo et al., 2006]

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica

Conclusion: Further work

- Improve boundary conditions at the domain limits
- The accuracy analysis to choose appropriate time stepping and surface boundary conditions
- A multi-resolution setup would relax the time step condition
- Performance improvements
- Simulations with multiple wavefields and the *Cubed Sphere* geometry

Thank you for your attention!

SPICE Research and Training Workshop IV, May 14-19, Cargèse, Corsica