SPICE – Workshop

TG New Methods: Algorithms, Grid Generation, Code Library

18th - 20th July 2005

Munich, Germany

The ADER-DG method for the simulation of elastic wave propagation on unstructured meshes

Martin Käser*, Michael Dumbser*, Josep de la Puente§

* DICA, University of Trento§ Geophysics, LMU München

Why very high order schemes for elastic waves ?

• physical models of the subsurface become more and more detailed, accurate computations of resulting synthetic seismograms become essential

model validation

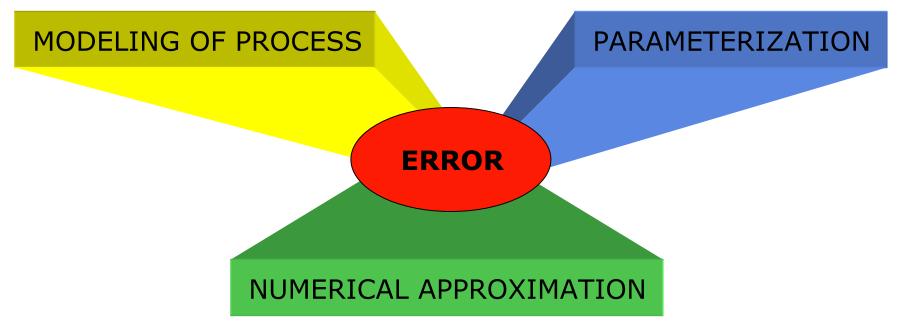
Why very high order schemes for elastic waves ?

• physical models of the subsurface become more and more detailed, accurate computations of resulting synthetic seismograms become essential

model validation

• understanding of misfit only possible with highly accurate numerical schemes

separation of errors



Why very high order schemes for elastic waves ?

• physical models of the subsurface become more and more detailed, accurate computations of resulting synthetic seismograms become essential

model validation

• understanding of misfit only possible with highly accurate numerical schemes

separation of errors

• for wave propagation problems time accuracy is as important as space accuracy (amplitude and phase errors depend on time and space accuracy respectively)

space <u>AND</u> time accuracy

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}u = 0$$

Why very high order schemes for elastic waves ?

• physical models of the subsurface become more and more detailed, accurate computations of resulting synthetic seismograms become essential

model validation

• understanding of misfit only possible with highly accurate numerical schemes

separation of errors

• for wave propagation problems time accuracy is as important as space accuracy (amplitude and phase errors depend on time and space accuracy respectively)

space <u>AND</u> time accuracy

• highly accurate numerical methods from the CFD community are applicable

CFD developments

Elastic Wave Equations

theory of linear elasticity (definition of strain, Hooke's law) +

Newton's law (acceleration through forces caused by stress)

velocity-stress formulation (non-conservative hyperbolic system)

In a heterogeneous medium:

space-dependent material coefficients Lame constants: $\lambda = \lambda(x,y,z)$, $\mu = \mu(x,y,z)$, density $\rho = \rho(x,y,z)$

$$\begin{aligned} \frac{\partial}{\partial t}\sigma_{xx} - (\lambda + 2\mu)\frac{\partial}{\partial x}u - \lambda\frac{\partial}{\partial y}v - \lambda\frac{\partial}{\partial z}w &= 0, \\ \frac{\partial}{\partial t}\sigma_{yy} - \lambda\frac{\partial}{\partial y}v - (\lambda + 2\mu)\frac{\partial}{\partial y}v - \lambda\frac{\partial}{\partial z}w &= 0, \\ \frac{\partial}{\partial t}\sigma_{zz} - \lambda\frac{\partial}{\partial x}u - \lambda\frac{\partial}{\partial y}v - (\lambda + 2\mu)\frac{\partial}{\partial z}w &= 0, \\ \frac{\partial}{\partial t}\sigma_{xy} - \mu(\frac{\partial}{\partial x}v + \frac{\partial}{\partial y}u) &= 0, \\ \frac{\partial}{\partial t}\sigma_{xz} - \mu(\frac{\partial}{\partial z}u + \frac{\partial}{\partial x}w) &= 0, \\ \frac{\partial}{\partial t}\sigma_{yz} - \mu(\frac{\partial}{\partial z}v + \frac{\partial}{\partial y}w) &= 0, \\ \frac{\partial}{\partial t}\sigma_{yz} - \mu(\frac{\partial}{\partial z}v + \frac{\partial}{\partial y}w) &= 0, \\ \rho\frac{\partial}{\partial t}u - \frac{\partial}{\partial x}\sigma_{xx} - \frac{\partial}{\partial y}\sigma_{xy} - \frac{\partial}{\partial z}\sigma_{xz} &= 0, \\ \rho\frac{\partial}{\partial t}v - \frac{\partial}{\partial x}\sigma_{xz} - \frac{\partial}{\partial y}\sigma_{yy} - \frac{\partial}{\partial z}\sigma_{yz} &= 0, \\ \rho\frac{\partial}{\partial t}w - \frac{\partial}{\partial x}\sigma_{xz} - \frac{\partial}{\partial y}\sigma_{yz} - \frac{\partial}{\partial z}\sigma_{zz} &= 0. \end{aligned}$$

Munich, July 2005

Eigenstructure of the Hyperbolic System

Compact vector-matrix notation gives

$$\frac{\partial Q}{\partial t} + A \frac{\partial}{\partial x} Q + B \frac{\partial}{\partial y} Q + C \frac{\partial}{\partial z} Q = 0,$$

with the vector of unknowns and Jacobian matrices

Eigenstructure (continued)

Eigenvalues give wave speeds of P- and S-waves

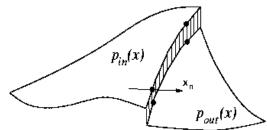
$$s_{1} = -c_{p}, \quad s_{2} = -c_{s}, \quad s_{3} = -c_{s}, \\ s_{4} = 0, \quad s_{5} = 0, \quad s_{6} = 0, \\ s_{7} = c_{s}, \quad s_{8} = c_{s}, \quad s_{9} = c_{p} \\ \hline P - wave \qquad S-wave$$

Eigenvectors are given through

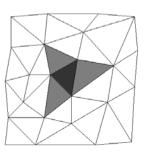
$$R_A = \begin{pmatrix} \lambda + 2\mu & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda + 2\mu \\ \lambda & 0 & 0 & 1 & 0 & 0 & 0 & \lambda \\ \lambda & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \lambda \\ 0 & 0 & \mu & 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & \mu & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 & 0 & 0 & 0 & \mu & 0 \\ c_p & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -c_p \\ 0 & 0 & c_s & 0 & 0 & 0 & 0 & -c_s & 0 & 0 \\ 0 & c_s & 0 & 0 & 0 & 0 & 0 & -c_s & 0 \end{pmatrix}$$

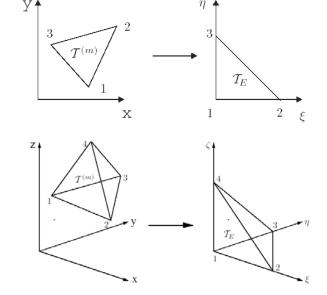
Discontinuous Galerkin (DG) Approach

(Reed & Hill, 1973; Cockburn & Shu, 1989, 1991)



- Ideas:• piecewise polynomial approximation of unknown functions
on unstructured triangular or tetrahedral meshes
 - incorporation of well-established concepts of numerical **fluxes across element interfaces** into the finite element framework
 - time evolution of polynomial coefficients (no point values or cell averages!)
 → no reconstruction or stencils !
 - computations done on reference element
 → increase of computational efficiency !
 - well-suited for **parallelization** due to **local** character of the scheme





(Reed & Hill, 1973; Cockburn & Shu, 1989, 1991)

The governing system of equations is given by

$$\frac{\partial u_p}{\partial t} + A_{pq} \frac{\partial u_q}{\partial x} + B_{pq} \frac{\partial u_q}{\partial y} = 0,$$

Representation of the numerical approximation of the state vector u_h in element (*m*) in terms of *l* basis functions Φ

$$\left(u_h^{(m)}\right)_p(\xi,\eta,t) = \hat{u}_{pl}^{(m)}(t)\Phi_l(\xi,\eta)$$

Index notation: Summation from l = 1 to N_d where $N_d = (N+1)(N+2) / 2$ is the number of degrees of freedom and N the degree of the approximation polynomial

The basis functions Φ are combinations of Jacobi-polynomials and form an orthogonal basis on triangles and tetrahedrons. Therefore, the mass matrix is always diagonal.

$$\Phi_{0}(\xi,\eta) = 1$$

$$\Phi_{1}(\xi,\eta) = -1 + 2\xi + \eta$$

$$\Phi_{2}(\xi,\eta) = -1 + 3\eta$$

$$\Phi_{3}(\xi,\eta) = \eta^{2} - 2\eta + 6\xi\eta + 6\xi^{2} - 6\xi + 1$$

$$\Phi_{4}(\xi,\eta) = 5\eta^{2} - 6\eta + 10\xi\eta - 2\xi + 1$$

$$\Phi_{5}(\xi,\eta) = 10\eta^{2} - 8\eta + 1$$

Multiplication of the governing equation with a test function Φ_k and integration over a triangle $\mathcal{T}^{(m)}$ gives

$$\int_{\mathcal{T}^{(m)}} \Phi_k \frac{\partial u_p}{\partial t} dV + \int_{\mathcal{T}^{(m)}} \Phi_k \left(A_{pq} \frac{\partial u_q}{\partial x} + B_{pq} \frac{\partial u_q}{\partial y} \right) dV = 0$$

Integration by parts yields

$$\int_{\mathcal{T}^{(m)}} \Phi_k \frac{\partial u_p}{\partial t} dV + \int_{\partial \mathcal{T}^{(m)}} \Phi_k F_p^h dS - \int_{\mathcal{T}^{(m)}} \left(\frac{\partial \Phi_k}{\partial x} A_{pq} u_q + \frac{\partial \Phi_k}{\partial y} B_{pq} u_q \right) dV = 0$$

The exact numerical flux in due to Roe's method has the form

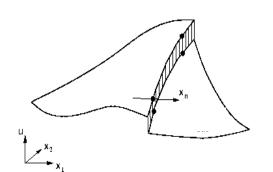
$$F_{p}^{h} = \frac{1}{2} T_{pq} \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs})^{-1} \hat{u}_{sl}^{(m)} \Phi_{l}^{(m)} + \frac{1}{2} T_{pq} \left(A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \right) (T_{rs})^{-1} \hat{u}_{sl}^{(m_{j})} \Phi_{l}^{(m_{j})},$$
with

with

$$\left|A_{qr}^{(m)}\right| = R_{pr}^{A} \left|\Lambda_{rs}\right| \left(R_{sq}^{A}\right)^{-1}, \quad \text{with} \quad \left|\Lambda_{rs}\right| = \text{diag}\left(\left|s_{1}\right|, \left|s_{2}\right|, \ldots\right)$$

► Xn

 $X_n = 0$



$$\int_{\mathcal{T}^{(m)}} \Phi_k \frac{\partial u_p}{\partial t} dV + \int_{\partial \mathcal{T}^{(m)}} \Phi_k F_p^h dS - \int_{\mathcal{T}^{(m)}} \left(\frac{\partial \Phi_k}{\partial x} A_{pq} u_q + \frac{\partial \Phi_k}{\partial y} B_{pq} u_q \right) dV = 0$$

Using the representation $u_p(\xi, \eta, t) = \hat{u}_{pl}^{(m)}(t)\Phi_l(\xi, \eta)$

and splitting the boundary integral into the flux contributions gives

$$\begin{aligned} &\frac{\partial}{\partial t} \hat{u}_{pl}^{(m)} \int_{\mathcal{T}^{(m)}} \Phi_k \Phi_l dV + \\ &+ \sum_{j=1}^3 T_{pq\,\frac{1}{2}}^j \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs}^j)^{-1} \hat{u}_{sl}^{(m)} \int_{\left(\partial \mathcal{T}^{(m)}\right)_j} \Phi_k^{(m)} \Phi_l^{(m)} dS + \\ &+ \sum_{j=1}^3 T_{pq\,\frac{1}{2}}^j \left(A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \right) (T_{rs}^j)^{-1} \hat{u}_{sl}^{(m_j)} \int_{\left(\partial \mathcal{T}^{(m)}\right)_j} \Phi_k^{(m)} \Phi_l^{(m_j)} dS - \\ &- A_{pq} \hat{u}_{ql}^{(m)} \int_{\mathcal{T}^{(m)}} \frac{\partial \Phi_k}{\partial x} \Phi_l dV - B_{pq} \hat{u}_{ql}^{(m)} \int_{\mathcal{T}^{(m)}} \frac{\partial \Phi_k}{\partial y} \Phi_l dV = 0. \end{aligned}$$

Transformation into the reference element is given through

$$\xi = \frac{1}{|J|} \left((x_3y_1 - x_1y_3) + x(y_3 - y_1) + y(x_1 - x_3) \right),$$

$$\eta = \frac{1}{|J|} \left((x_1y_2 - x_2y_1) + x(y_1 - y_2) + y(x_2 - x_1) \right),$$

$$\begin{array}{c} Y \\ 3 \\ \hline \\ 1 \\ \hline \\ X \end{array} \begin{array}{c} \eta \\ 3 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 2 \\ \xi \end{array}$$

$$x = x_1 + (x_2 - x_1) \xi + (x_3 - x_1) \eta,$$

$$y = y_1 + (y_2 - y_1) \xi + (y_3 - y_1) \eta,$$

with
$$|J| = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)$$

The Jacobian matrix of the transformation is given through $J = \begin{pmatrix} x_{\xi} & y_{\xi} \\ x_{\eta} & y_{\eta} \end{pmatrix}$ and it holds $dxdy = |J| d\xi d\eta, \qquad \begin{pmatrix} u_x \\ u_y \end{pmatrix} = J^{-1} \begin{pmatrix} u_{\xi} \\ u_y \end{pmatrix}$

$$dxdy = |J| d\xi d\eta, \qquad \begin{pmatrix} u_x \\ u_y \end{pmatrix} = J^{-1} \begin{pmatrix} u_\xi \\ u_\eta \end{pmatrix}$$

This provides the transformed Jacobian matrices of the governing equation as

$$A_{pq}^* = A_{pq} \frac{\partial \xi}{\partial x} + B_{pq} \frac{\partial \xi}{\partial y},$$

$$B_{pq}^* = A_{pq} \frac{\partial \eta}{\partial x} + B_{pq} \frac{\partial \eta}{\partial y}$$

Martin Käser

The transformation of the equation into the reference element then gives

$$\begin{split} &\frac{\partial}{\partial t} \hat{u}_{pl}^{(m)} \left| J \right| \int_{\mathcal{T}_{E}} \Phi_{k} \Phi_{l} d\xi d\eta + \\ &+ \sum_{j=1}^{3} T_{pq}^{j} \frac{1}{2} \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs}^{j})^{-1} \hat{u}_{sl}^{(m)} \left| S_{j} \right| \int_{0}^{1} \Phi_{k}^{(m)} (\chi_{j}) \Phi_{l}^{(m)} (\chi_{j}) d\chi_{j} + \\ &+ \sum_{j=1}^{3} T_{pq}^{j} \frac{1}{2} \left(A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \right) (T_{rs}^{j})^{-1} \hat{u}_{sl}^{(m_{j})} \left| S_{j} \right| \int_{0}^{1} \Phi_{k}^{(m)} (\chi_{j}) \Phi_{l}^{(m_{j})} (\chi_{j}) d\chi_{j} - \\ &- A_{pq}^{*} \hat{u}_{ql} \left| J \right| \int_{\mathcal{T}_{E}} \frac{\partial \Phi_{k}}{\partial \xi} \Phi_{l} d\xi d\eta - B_{pq}^{*} \hat{u}_{ql} \left| J \right| \int_{\mathcal{T}_{E}} \frac{\partial \Phi_{k}}{\partial \eta} \Phi_{l} d\xi d\eta = 0 \end{split}$$

 $0 \le \chi_j \le 1$ parameterizes the j-th edge of the reference triangle and $|S_j|$ is its length in physical space

The transformation of the equation into the reference element then gives

$$\begin{split} &\frac{\partial}{\partial t} \hat{u}_{pl}^{(m)} \left| J \right| \int_{\mathcal{T}_E} \Phi_k \Phi_l d\xi d\eta + \\ &+ \sum_{j=1}^3 T_{pq\,\frac{1}{2}}^j \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs}^j)^{-1} \hat{u}_{sl}^{(m)} \left| S_j \right| \int_0^1 \Phi_k^{(m)}(\chi_j) \Phi_l^{(m)}(\chi_j) d\chi_j + \\ &+ \sum_{j=1}^3 T_{pq\,\frac{1}{2}}^j \left(A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \right) (T_{rs}^j)^{-1} \hat{u}_{sl}^{(m_j)} \left| S_j \right| \int_0^1 \Phi_k^{(m)}(\chi_j) \Phi_l^{(m_j)}(\chi_j) d\chi_j - \\ &- A_{pq}^* \hat{u}_{ql} \left| J \right| \int_{\mathcal{T}_E} \frac{\partial \Phi_k}{\partial \xi} \Phi_l d\xi d\eta - B_{pq}^* \hat{u}_{ql} \left| J \right| \int_{\mathcal{T}_E} \frac{\partial \Phi_k}{\partial \eta} \Phi_l d\xi d\eta = 0 \end{split}$$

The following integrals on the reference element can be pre-computed and stored

$$M_{kl} = \int_{\mathcal{T}_E} \Phi_k \Phi_l d\xi d\eta, \qquad K_{kl}^{\xi} = \int_{\mathcal{T}_E} \frac{\partial \Phi_k}{\partial \xi} \Phi_l d\xi d\eta,$$

$$F_{kl}^{j,0} = \int_0^1 \Phi_k^{(m)}(\chi_j) \Phi_l^{(m)}(\chi_j) d\chi_j, \qquad K_{kl}^{\eta} = \int_{\mathcal{T}_E} \frac{\partial \Phi_k}{\partial \eta} \Phi_l d\xi d\eta.$$

$$F_{kl}^{j,i} = \int_0^1 \Phi_k^{(m)}(\chi_j) \Phi_l^{(m_j)}(\chi_j) d\chi_j,$$

Martin Käser

ADER-DG – Time Integration

The time integration over one time step from level n to n+1 leads to

$$\left[\left(\hat{u}_{pl}^{(m)} \right)^{n+1} - \left(\hat{u}_{pl}^{(m)} \right)^{n} \right] |J| M_{kl} + \\ + \frac{1}{2} \sum_{j=1}^{3} T_{pq}^{j} \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs}^{j})^{-1} |S_{j}| F_{kl}^{j,0} \cdot I_{qlmn}(\Delta t) \left(\hat{u}_{mn}^{(m)} \right)^{n} + \\ + \frac{1}{2} \sum_{j=1}^{3} T_{pq}^{j} \left(A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \right) (T_{rs}^{j})^{-1} |S_{j}| F_{kl}^{j,i} \cdot I_{qlmn}(\Delta t) \left(\hat{u}_{mn}^{(m)} \right)^{n} - \\ - A_{pq}^{*} |J| K_{kl}^{\xi} \cdot I_{qlmn}(\Delta t) \left(\hat{u}_{mn}^{(m)} \right)^{n} - B_{pq}^{*} |J| K_{kl}^{\eta} \cdot I_{qlmn}(\Delta t) \left(\hat{u}_{mn}^{(m)} \right)^{n} = 0$$

where
$$\int_{0}^{\Delta t} \hat{u}_{pl}(t) dt = I_{plqm}(\Delta t) \hat{u}_{qm}(0) \qquad \text{ at local time level } \mathbf{t} = \mathbf{t}^{\mathbf{n}} = \mathbf{0}$$

ADER-DG – Time Integration

In the reference element we have the governing equation

$$\frac{\partial u_p}{\partial t} + A_{pq}^* \frac{\partial u_q}{\partial \xi} + B_{pq}^* \frac{\partial u_q}{\partial \eta} = 0$$

For a linear system the k-th time derivative is expressed by space derivatives

$$\frac{\partial^k u_p}{\partial t^k} = (-1)^k \left(A_{pq}^* \frac{\partial}{\partial \xi} + B_{pq}^* \frac{\partial}{\partial \eta} \right)^k u_q$$

The Taylor series expansion in time around u_p at local time level t=0 gives

$$u_p(\xi,\eta,t) = \sum_{k=0}^{N} \frac{t^k}{k!} \frac{\partial^k}{\partial t^k} u_p(\xi,\eta,0)$$

$$u_p(\xi,\eta,t) = \sum_{k=0}^{N} \frac{t^k}{k!} \left(-1\right)^k \left(A_{pq}^* \frac{\partial}{\partial \xi} + B_{pq}^* \frac{\partial}{\partial \eta}\right)^k \Phi_l(\xi,\eta) \hat{u}_{ql}(0)$$

ADER-DG – Time Integration

Projecting this approximation onto the basis functions gives the evolution of the degrees of freedom from level $t = t^n$ to $t^{n+1} = t^n + \Delta t$

$$\hat{u}_{pl}(t) = \frac{\left\langle \Phi_n, \sum_{k=0}^N \frac{t^k}{k!} \left(-1\right)^k \left(A_{pq}^* \frac{\partial}{\partial \xi} + B_{pq}^* \frac{\partial}{\partial \eta}\right)^k \Phi_m(\xi) \right\rangle}{\left\langle \Phi_n, \Phi_l \right\rangle} \hat{u}_{qm}(0)$$

Analytical time integration gives

$$\int_{0}^{\Delta t} \hat{u}_{pl}(t) dt = \frac{\left\langle \Phi_n, \sum_{k=0}^{N} \frac{\Delta t^{(k+1)}}{(k+1)!} \left(-1\right)^k \left(A_{pq}^* \frac{\partial}{\partial \xi} + B_{pq}^* \frac{\partial}{\partial \eta}\right)^k \Phi_m(\xi) \right\rangle}{\left\langle \Phi_n, \Phi_l \right\rangle} \hat{u}_{qm}(0)$$

where we define

$$I_{plqm}(\Delta t) = \frac{\left\langle \Phi_n, \sum_{k=0}^N \frac{\Delta t^{(k+1)}}{(k+1)!} \left(-1\right)^k \left(A_{pq}^* \frac{\partial}{\partial \xi} + B_{pq}^* \frac{\partial}{\partial \eta}\right)^k \Phi_m(\xi) \right\rangle}{\left\langle \Phi_n, \Phi_l \right\rangle}$$

Boundary Conditions

Most important:1) open, outflow, absorbing, non-reflective boundaries2) free surface boundaries

Open boundaries:

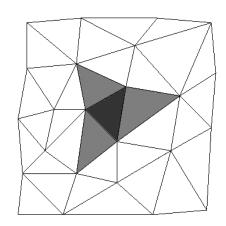
• only outgoing flux is considered, incoming flux is set to zero

$$F_p^{\text{OpenBC}} = \frac{1}{2} T_{pq} \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs})^{-1} \hat{u}_{sl}^{(m)} \Phi_l^{(m)}$$

Free surface boundaries:

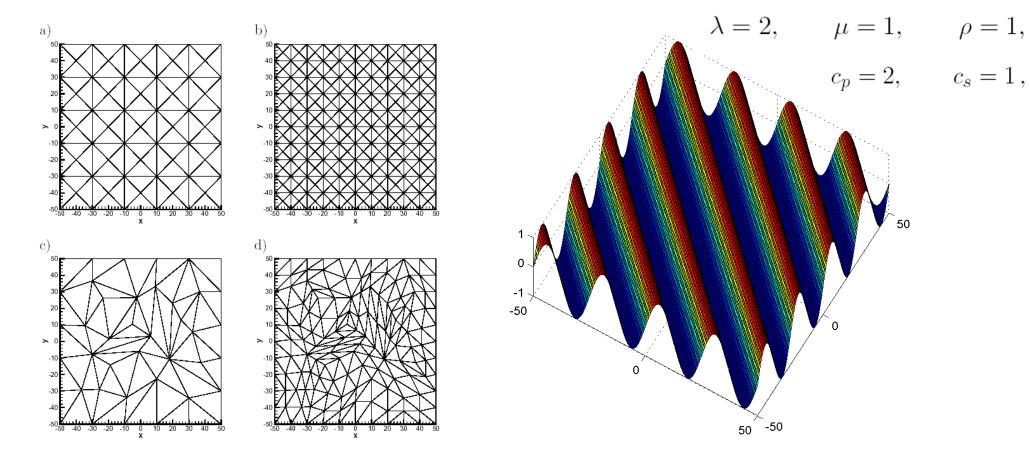
• only outgoing flux is considered, incoming flux is set to zero

$$F_{p}^{\text{FreeBC}} = \frac{1}{2} T_{pq} \left(A_{qr}^{(m)} + \left| A_{qr}^{(m)} \right| \right) (T_{rs})^{-1} \hat{u}_{sl}^{(m)} \Phi_{l}^{(m)} + \frac{1}{2} T_{pq} \left(A_{qr}^{(m)} - \left| A_{qr}^{(m)} \right| \right) \Gamma_{rs} (T_{st})^{-1} \hat{u}_{tl}^{(m)} \Phi_{l}^{(m)}$$
with $\Gamma_{rs} = \text{diag} (-1, 1, -1, 1, 1)$



Numerical Accuracy and Convergence

- plane P- and S-waves travel with different speeds and in different directions
- after simulation time t = T waves coincide with the initial condition, i.e. $Q_p(\vec{x}, T) = Q_p(\vec{x}, 0)$
- analysis up to 10-th order in space and time on four $T = 100\sqrt{2}$, mesh refinement levels on regular and irregular triangulations



h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
2.108	$1.542 \cdot 10^{0}$	_	$1.044 \cdot 10^{2}$	_	7500	123
1.054	$4.087 \cdot 10^{-1}$	1.916	$2.760\cdot10^1$	1.919	30000	892
0.703	$1.769 \cdot 10^{-1}$	2.065	$1.202\cdot 10^1$	2.051	67500	2934
0.527	$9.733 \cdot 10^{-2}$	2.077	$6.657 \cdot 10^0$	2.053	120000	6925

Table 2: Convergence rates of ADER-DG O2 on regular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
3.514	$3.292 \cdot 10^{-2}$	—	$1.917\cdot 10^0$	—	9000	147
2.108	$4.215\cdot10^{-3}$	4.024	$2.555 \cdot 10^{-1}$	3.945	25000	644
1.054	$2.734 \cdot 10^{-4}$	3.947	$1.633 \cdot 10^{-2}$	3.967	100000	4947
0.703	$5.444 \cdot 10^{-5}$	3.980	$3.243 \cdot 10^{-3}$	3.988	225000	16492

Table 4: Convergence rates of ADER-DG $\mathcal{O}4$ on regular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
5.270	$2.003 \cdot 10^{-3}$	_	$7.847 \cdot 10^{-2}$	—	8400	221
2.635	$3.665 \cdot 10^{-5}$	5.772	$1.411 \cdot 10^{-3}$	5.797	33600	1650
1.757	$3.299 \cdot 10^{-6}$	5.938	$1.285\cdot10^{-4}$	5.909	75600	5437
1.318	$5.851 \cdot 10^{-7}$	6.012	$2.315 \cdot 10^{-5}$	5.959	134400	12730

Table 6: Convergence rates of ADER-DG $\mathcal{O}6$ on regular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU[s]
5.270	$1.896 \cdot 10^{-5}$	_	$4.665 \cdot 10^{-4}$	_	14400	843
3.514	$8.074 \cdot 10^{-7}$	7.784	$1.955 \cdot 10^{-5}$	7.824	32400	2784
2.635	$7.903 \cdot 10^{-8}$	8.078	$2.010 \cdot 10^{-6}$	7.908	57600	6653
2.108	$1.365 \cdot 10^{-8}$	7.870	$3.449 \cdot 10^{-7}$	7.899	90000	12874

Table 8: Convergence rates of ADER-DG $\mathcal{O}8$ on regular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
10.541	$8.902 \cdot 10^{-5}$	_	$1.660 \cdot 10^{-3}$	—	5500	381
5.270	$1.099 \cdot 10^{-7}$	9.662	$1.764 \cdot 10^{-6}$	9.879	22000	2878
3.514	$2.000 \cdot 10^{-9}$	9.882	$3.188 \cdot 10^{-8}$	9.898	49500	9946
2.635	$1.980 \cdot 10^{-10}$	8.038	$5.285 \cdot 10^{-9}$	6.246	88000	23100

Table 10: Convergence rates of ADER-DG $\mathcal{O}10$ on regular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
6.513	$2.224 \cdot 10^{0}$	—	$1.459 \cdot 10^{2}$	—	2976	55
3.257	$1.201 \cdot 10^0$	0.889	$6.952\cdot 10^1$	1.070	11904	438
1.628	$2.844 \cdot 10^{-1}$	2.078	$1.371\cdot 10^1$	2.342	47616	3509
0.814	$5.748 \cdot 10^{-2}$	2.307	$2.704\cdot 10^0$	2.342	190464	28232

Table 11: Convergence rates of ADER-DG O2 on irregular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
6.513	$1.447 \cdot 10^{-1}$	_	$1.768\cdot 10^0$	_	9920	315
3.257	$1.111 \cdot 10^{-2}$	3.703	$9.910 \cdot 10^{-2}$	4.157	39680	2526
1.628	$1.054 \cdot 10^{-3}$	3.397	$6.604 \cdot 10^{-3}$	3.907	158720	20246
0.814	$8.002 \cdot 10^{-5}$	3.720	$4.266 \cdot 10^{-4}$	3.952	634880	164634

Table 13: Convergence rates of ADER-DG $\mathcal{O}4$ on irregular meshes.

ſ	h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
	13.026	$1.421 \cdot 10^{-1}$	—	$7.123 \cdot 10^{-1}$	—	5208	219
	6.513	$3.845 \cdot 10^{-3}$	5.208	$1.279 \cdot 10^{-2}$	5.800	20832	1780
	3.257	$6.839 \cdot 10^{-5}$	5.813	$2.255\cdot10^{-4}$	5.825	83328	14044
	1.628	$1.220 \cdot 10^{-6}$	5.809	$3.892 \cdot 10^{-6}$	5.857	333312	107658

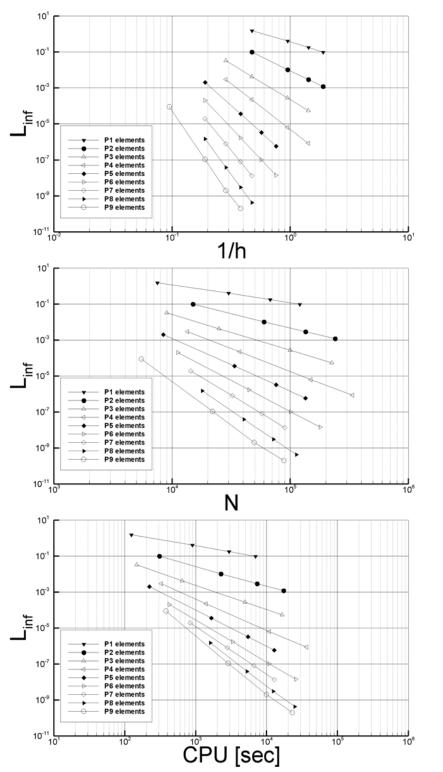
Table 15: Convergence rates of ADER-DG $\mathcal{O}6$ on irregular meshes.

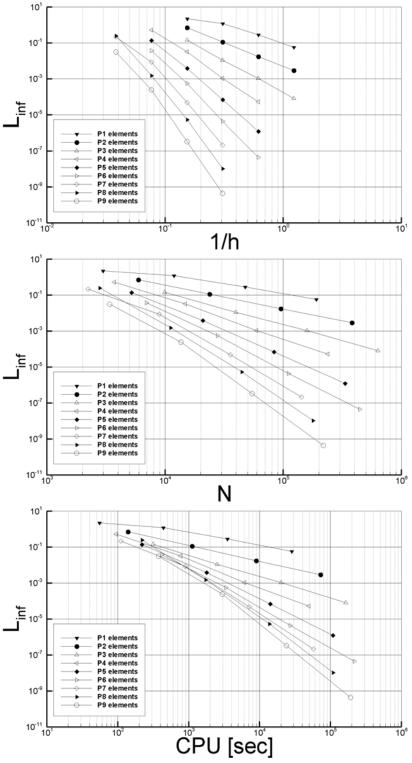
h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
			$4.104 \cdot 10^{0}$			111
13.026	$8.565 \cdot 10^{-3}$	4.662	$1.867 \cdot 10^{-2}$	7.780	8928	895
6.513	$4.746 \cdot 10^{-5}$	7.496	$9.682 \cdot 10^{-5}$	7.591	35712	7157
3.257	$2.154 \cdot 10^{-7}$	7.783	$4.058 \cdot 10^{-7}$	7.898	142848	57415

Table 17: Convergence rates of ADER-DG $\mathcal{O}8$ on irregular meshes.

h	L^{∞}	\mathcal{O}^∞	L^2	\mathcal{O}^2	N_d	CPU [s]
26.052	$3.077 \cdot 10^{-2}$	_	$3.504 \cdot 10^{-1}$	_	3410	374
13.026	$2.393 \cdot 10^{-4}$	7.006	$3.241 \cdot 10^{-4}$	10.078	13640	2981
6.513	$3.265 \cdot 10^{-7}$	9.518	$5.065 \cdot 10^{-7}$	9.322	54560	23859
3.257	$4.330 \cdot 10^{-10}$	9.559	$6.134 \cdot 10^{-9}$	6.368	218240	191180

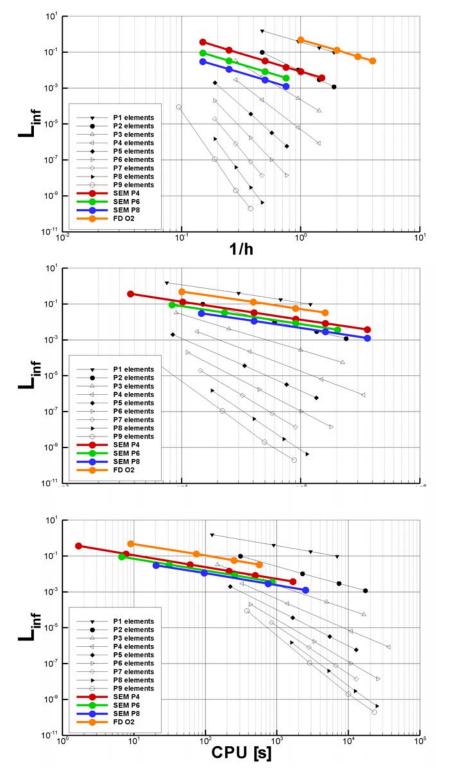
Table 19: Convergence rates of ADER-DG $\mathcal{O}10$ on irregular meshes.

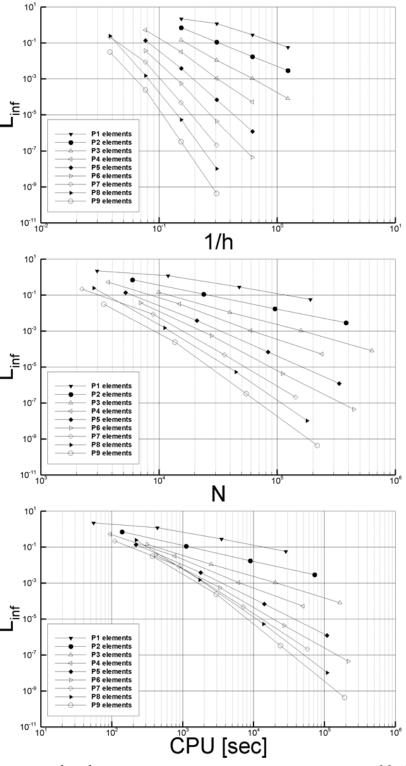




ADER-DG for Elastic Waves on unstructured meshes

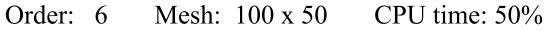
Munich, July 2005

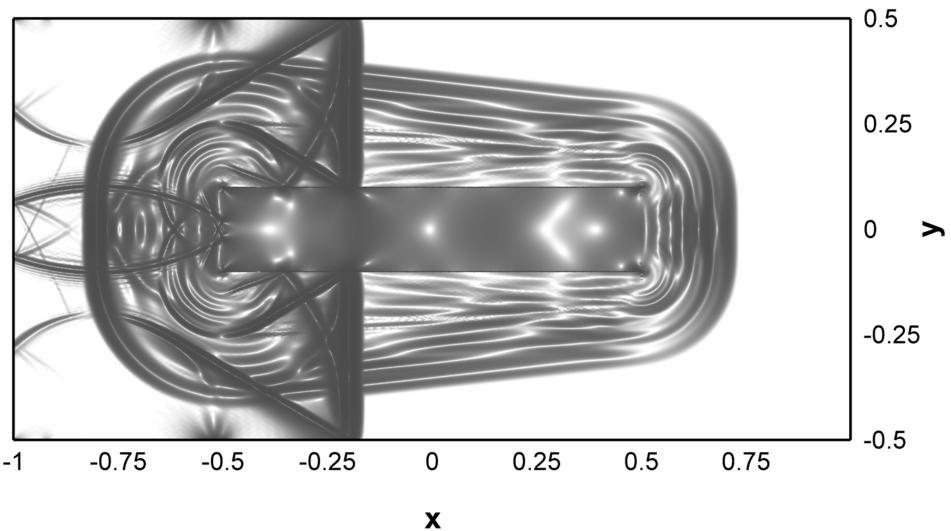




Munich, July 2005

Application: Strong Material Contrasts

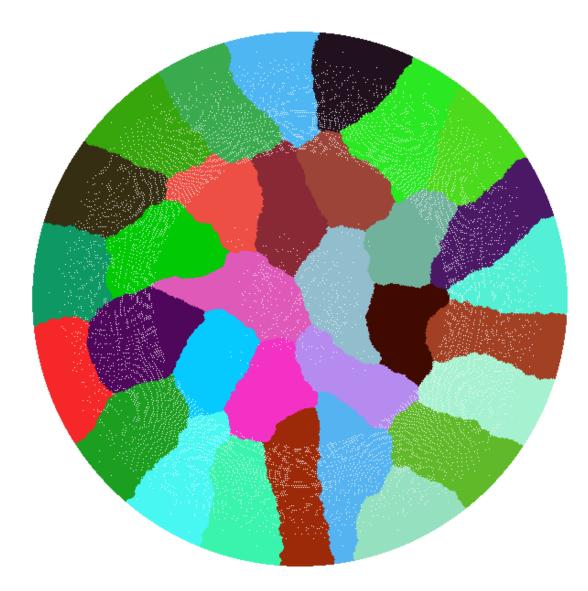




Martin Käser

ADER-DG for Elastic Waves on unstructured meshes

Application: Global Seismology using PREM



(Dziewonski & Anderson, 1981)

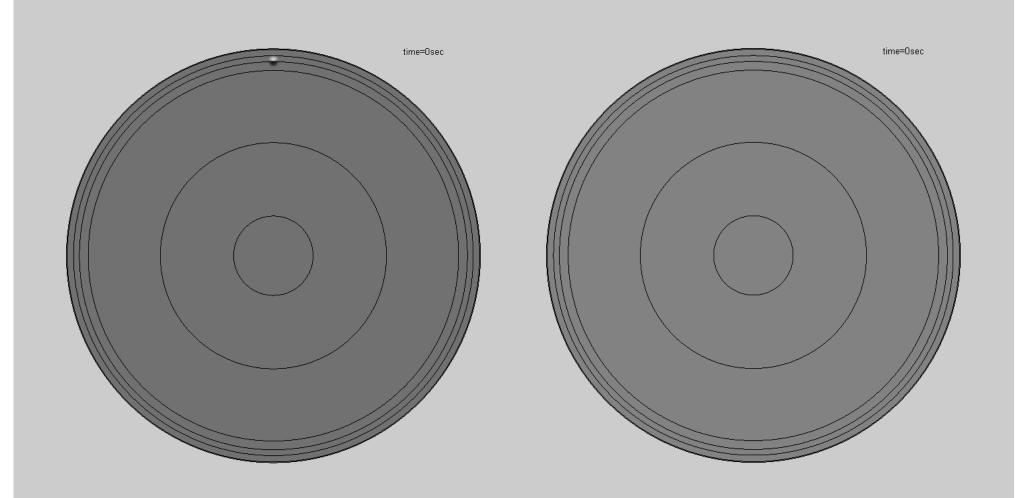
- triangular mesh adapts nicely to **geometry**
- mesh spacing proportional to P-wave velocity
- optimal use of the CFL criterion
- unphysical, **decreasing mesh spacing** towards the center is avoided
- **no** grid staggering
- **no** interpolation at hanging nodes
- parallelization with METIS mesh partitioning

Example: Global Seismology using PREM

(Dziewonski & Anderson, 1981)

vertical velocity component v

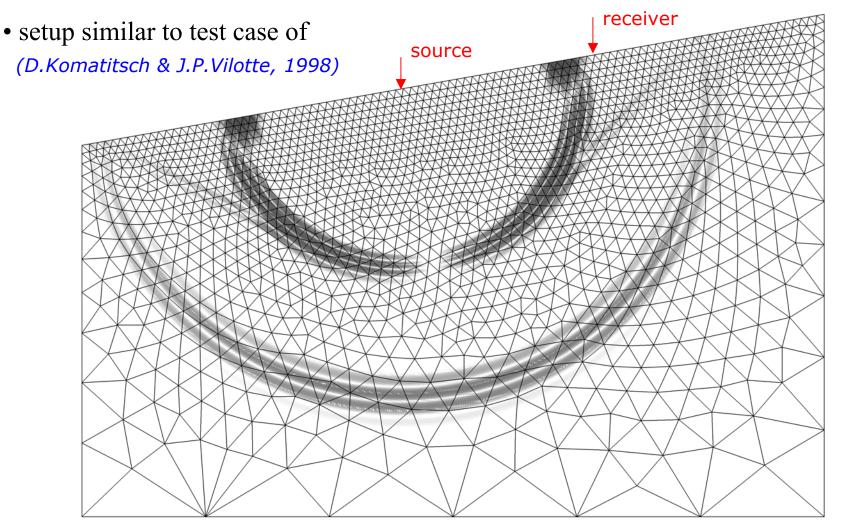
shear stress component σ_{xy}



Free Surface Boundary (Lamb's Problem)

(Lamb, 1904)

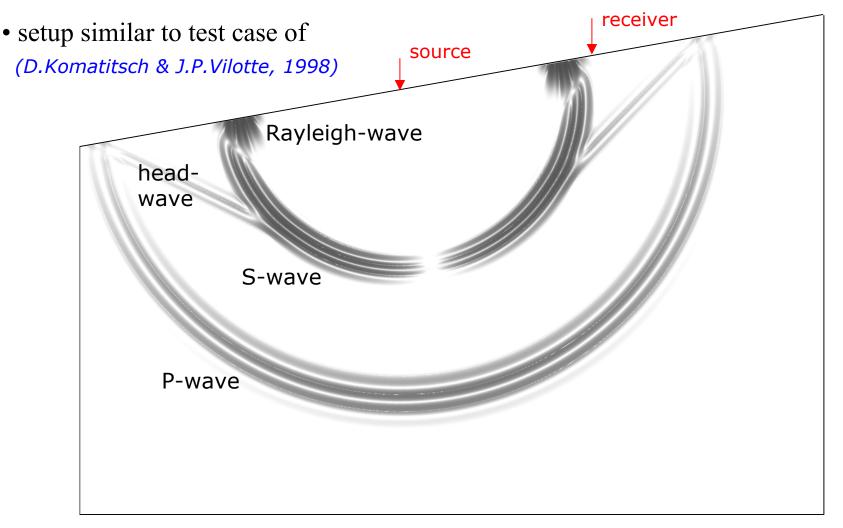
- vertical point force on the free surface
- investigation of accuracy of P-, S-, and Rayleigh waves



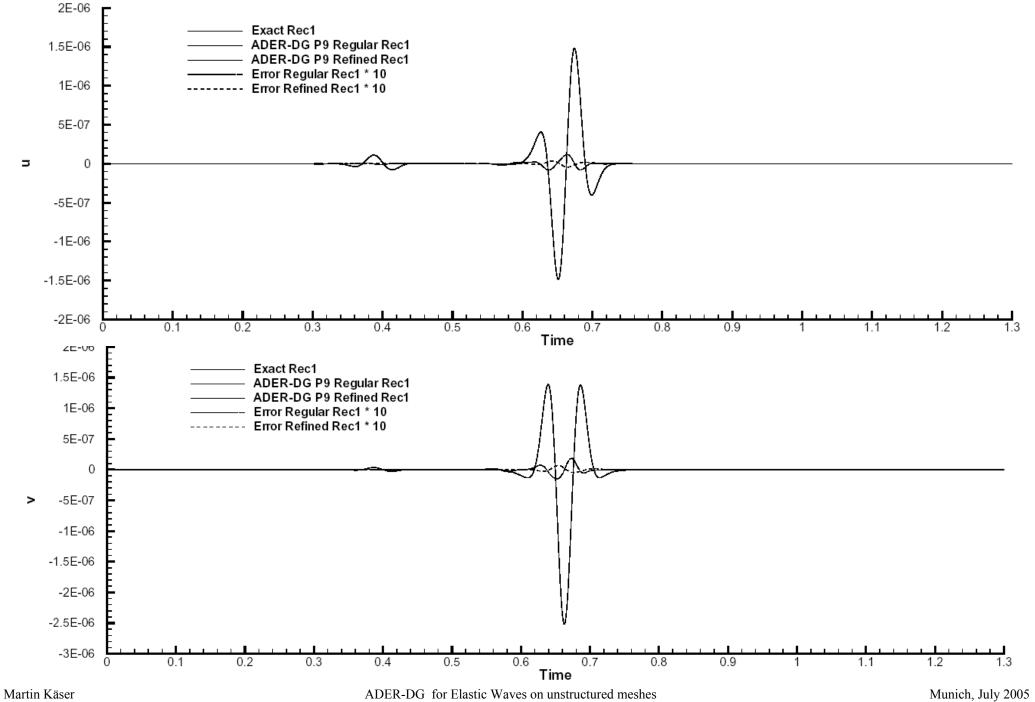
Free Surface Boundary (Lamb's Problem)

(Lamb, 1904)

- vertical point force on the **free surface**
- investigation of accuracy of P-, S-, and Rayleigh waves

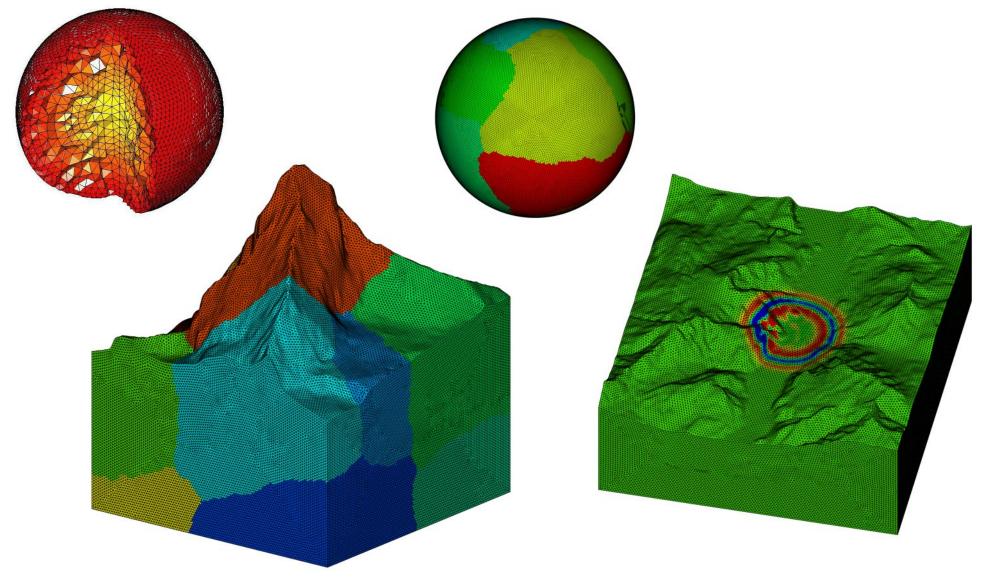


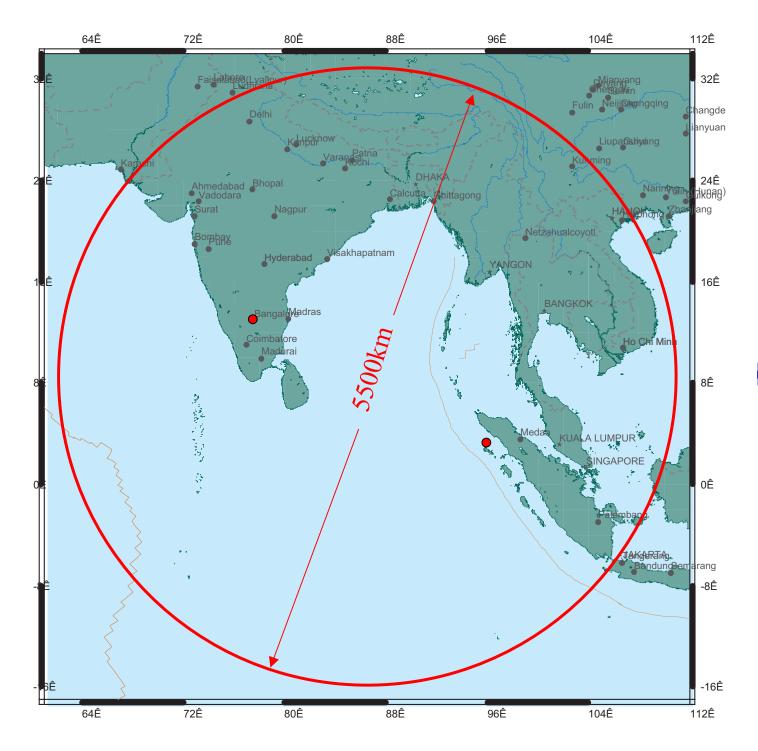
Free Surface Boundary (Lamb's Problem)

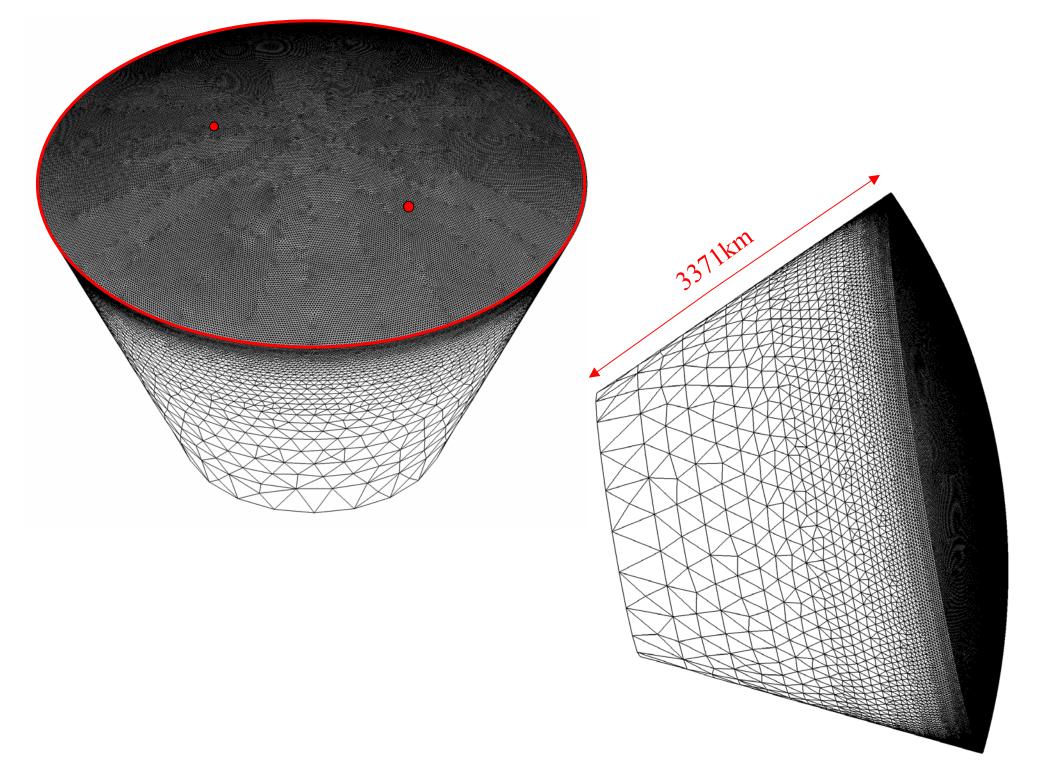


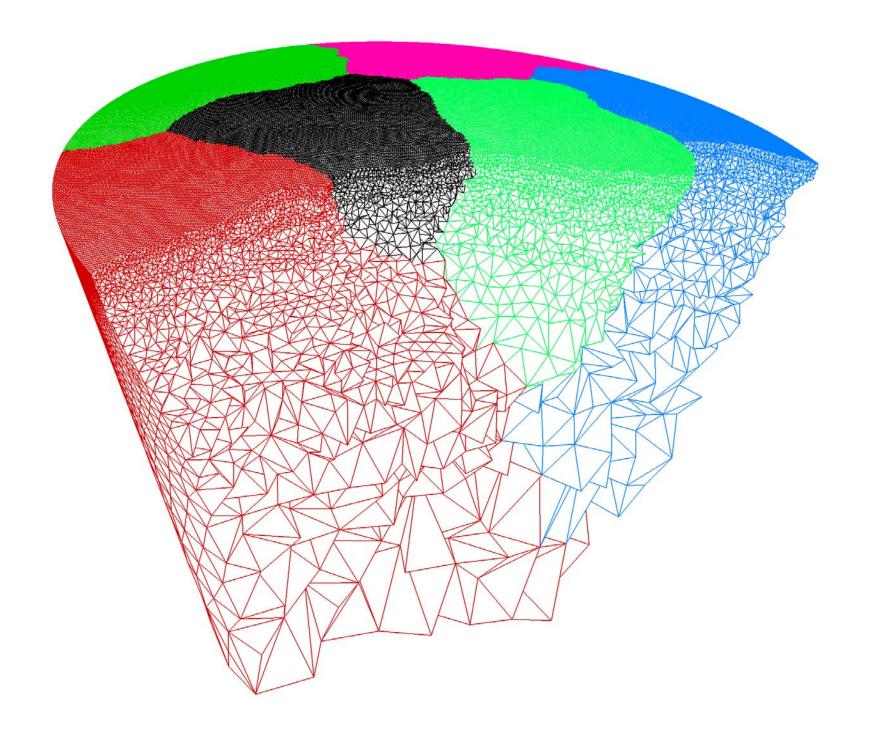
3-D Applications in Progress

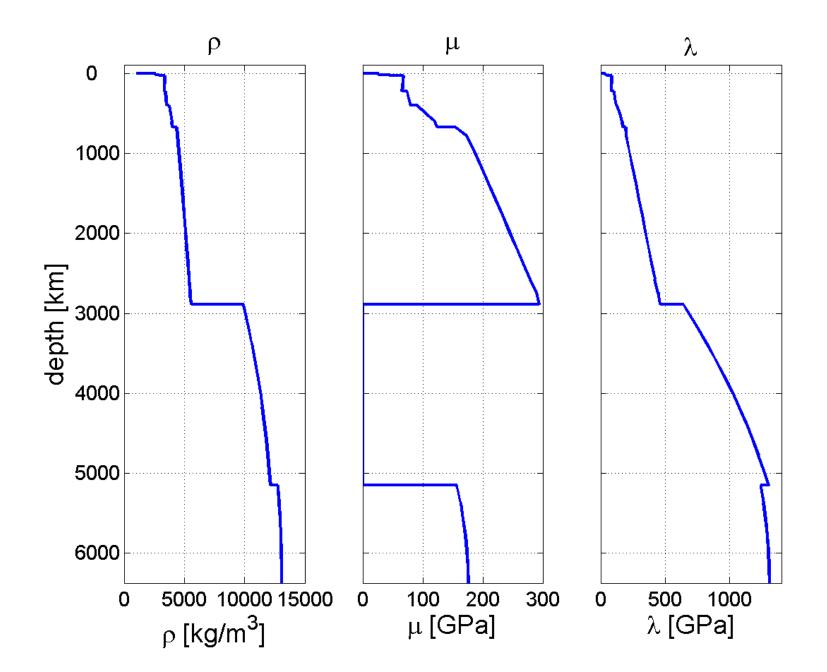
- Tetraheral meshes give the **flexibility** needed for **complex geometries**
- METIS mesh partitioner can handle large 3-D tetrahedral meshes easily

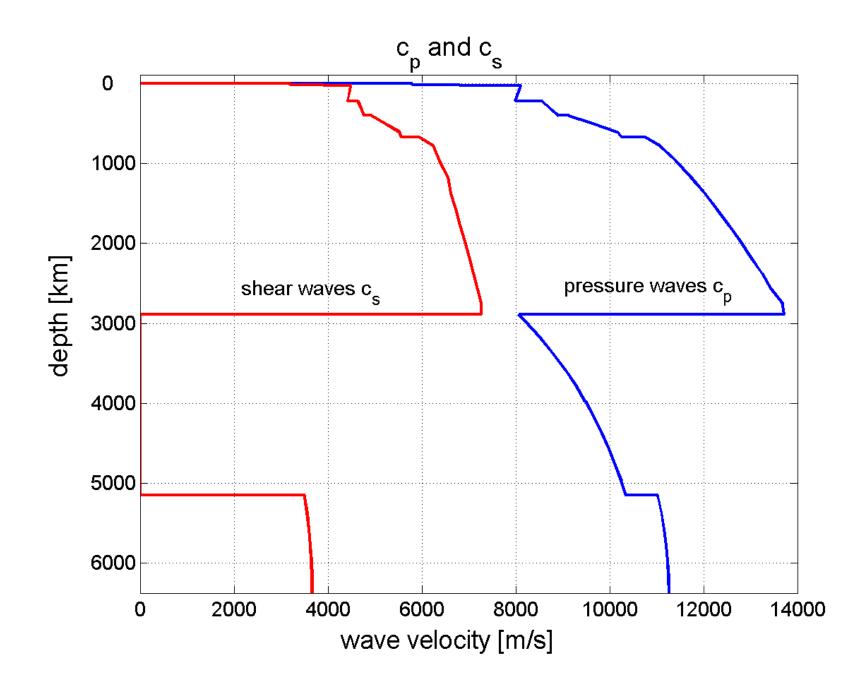


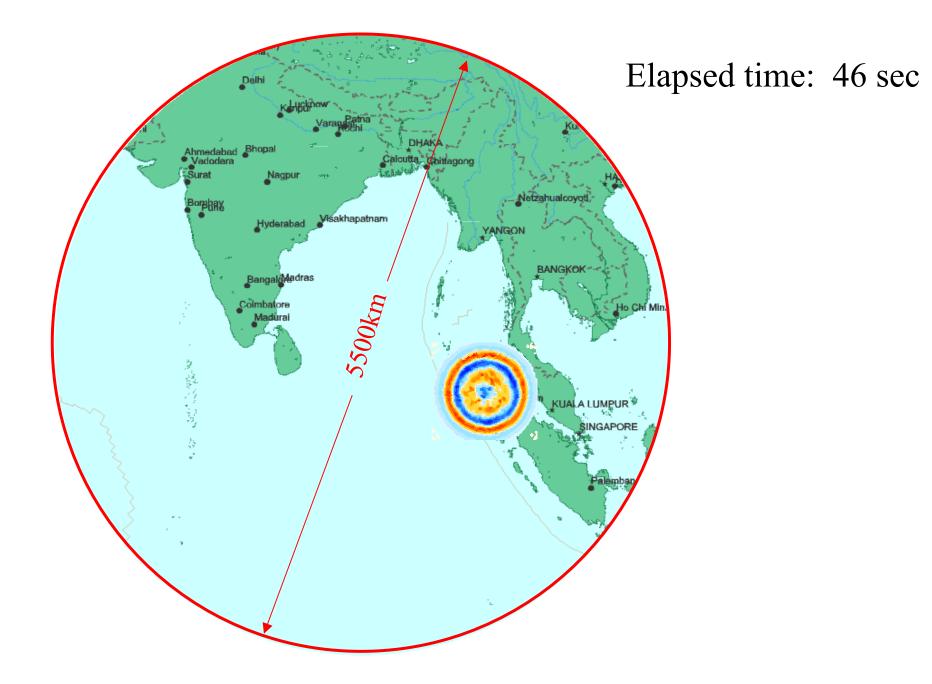


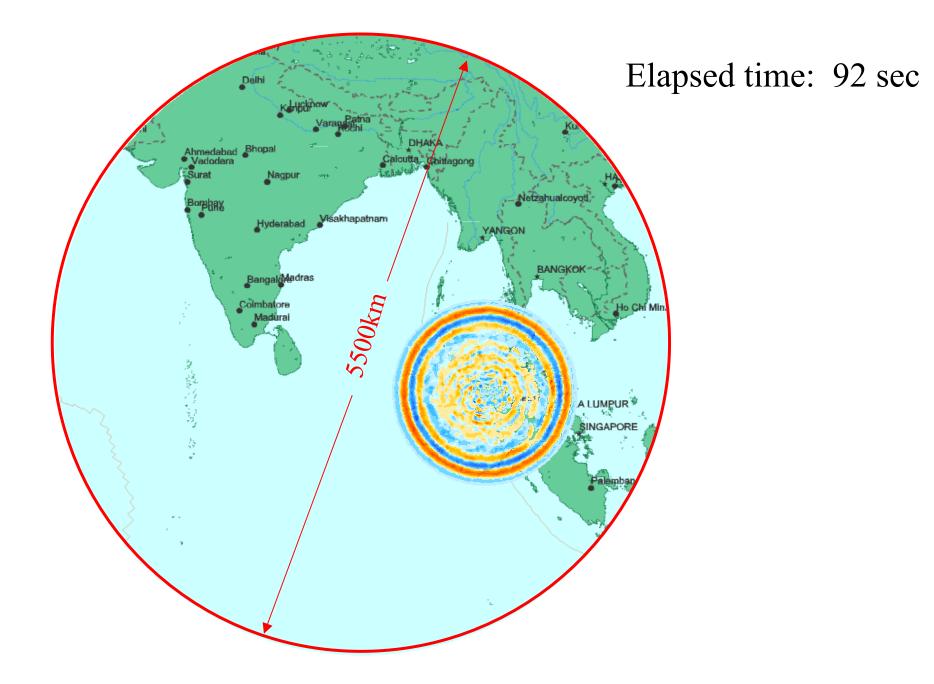


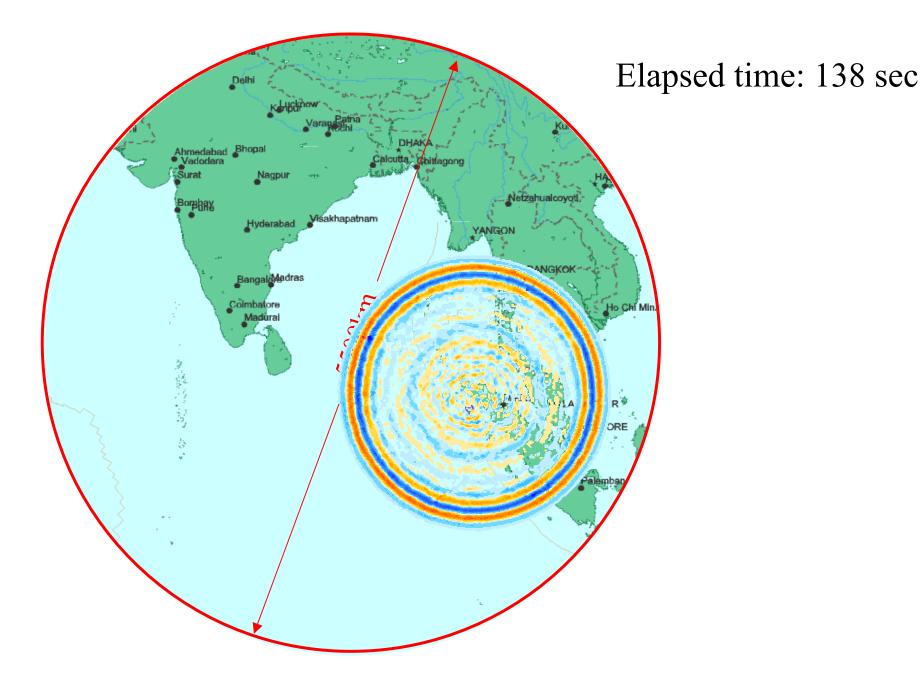


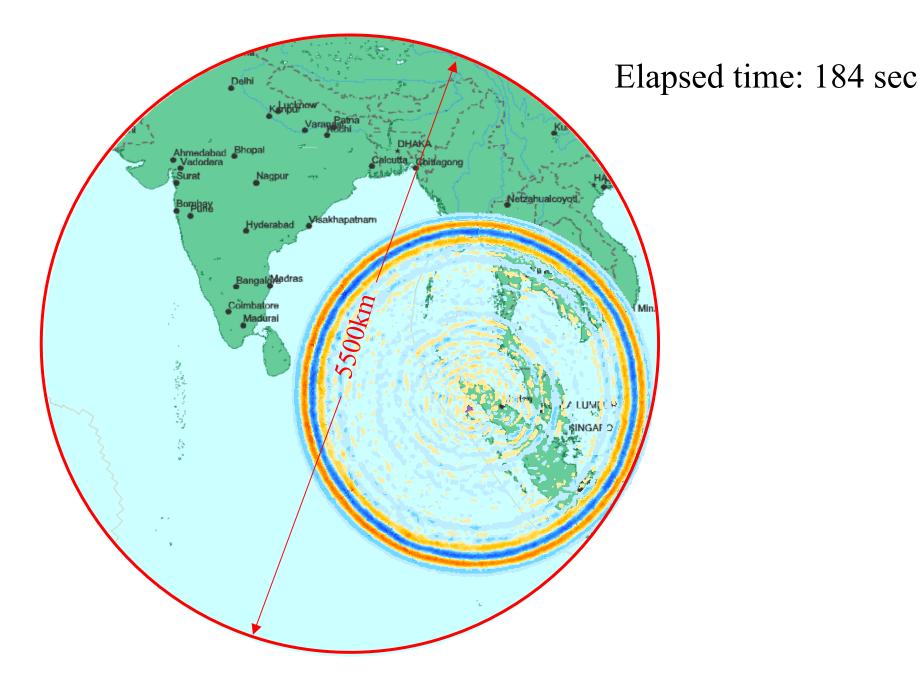


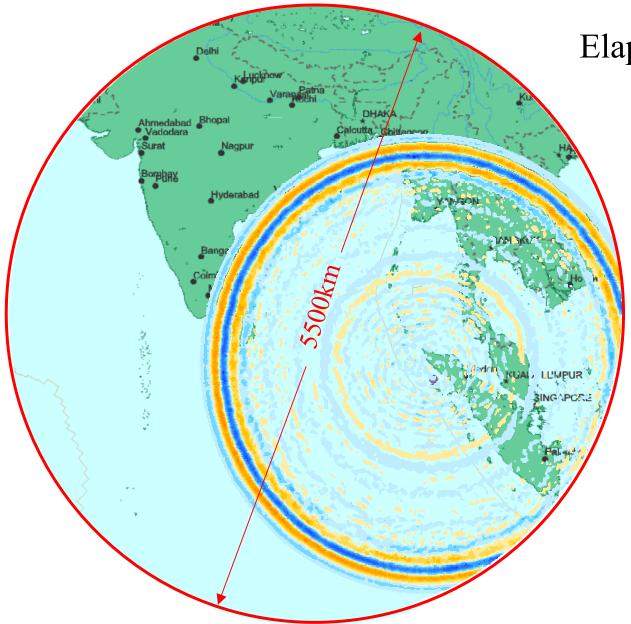




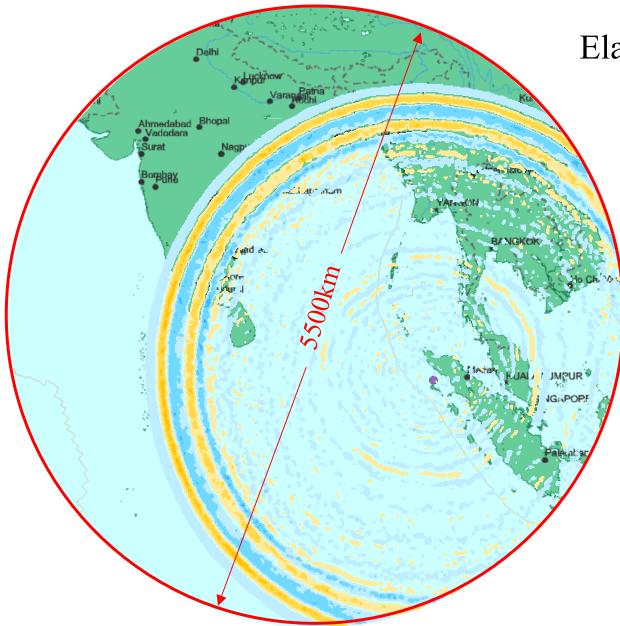




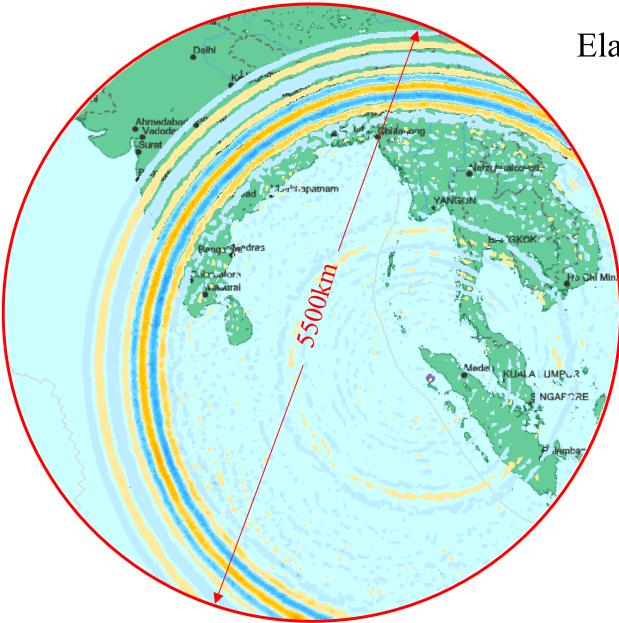




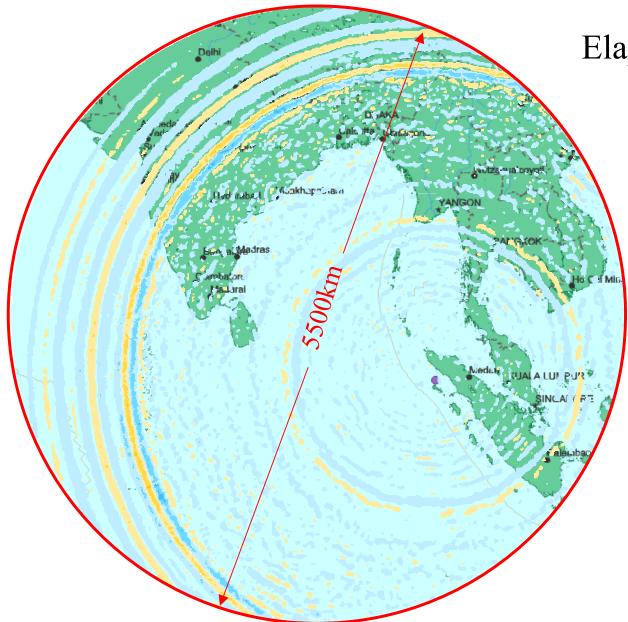
Elapsed time: 230 sec



Elapsed time: 276 sec



Elapsed time: 322 sec



Elapsed time: 368 sec