2DSPEC – 3DSPEC Object decomposed Spectral Element Code

G. Festa, J.-P. Vilotte and E. Delavaud

The program development is supported by the SPICE EU-project

SPICE meeting Munich 18-20 July 2005

SPECTRAL ELEMENTS

Weak formulation of elastodynamics

$$\int_{\Omega} \rho \mathbf{w} \, \dot{\mathbf{v}} d\Omega = \int_{\Omega} \mathbf{w} \, \mathbf{f}^{ext} d\Omega - \int_{\Omega} \nabla \mathbf{w} : \mathbf{c} : \nabla \mathbf{u} d\Omega + \int_{\Gamma} \mathbf{w} \, \mathbf{T} d\Gamma$$

Ω elastic domain with : $<math display="block">Ω = Ω_1 ∪ Ω_2$ $m(Ω_1 ∩ Ω_2) = 0$ $∂Ω_1 ∩ ∂Ω_2 = Γ$ Γaccounts for a surface on which Neumann or Robin b.c. are imposed

(fault, Mortar ...etc)

Shape function evaluation

SPECTRAL ELEMENTS

Source and Receiver location

Time evolution

QUADRANGULATION

Separation of the domain in (quadrangluar) elements

$$\sum_{e} \int_{\Omega_{e}} \rho \mathbf{w} \mathbf{v} d\Omega = \sum_{e} \int_{\Omega_{e}} \mathbf{w} \mathbf{f}^{ext} d\Omega - \sum_{e} \int_{\Omega_{e}} \nabla \mathbf{w} : \mathbf{c} : \nabla \mathbf{u} d\Omega + \sum_{e} \int_{\Gamma \cap \partial \Omega_{e}} \mathbf{w} \mathbf{T} d\Gamma$$

 Λ

Complex domains are meshed by GiD http://gid.cimne.upc.es

MESH PARTITIONING

Decomposition of the computational volume into subdomains

Partitioning graph software Metis and ParMetis http://wwwusers.cs.umn.edu/~karypis/metis/

Any subdomain is the object of a processor

Computation is done at the level of the element

It enables different kinds of comunications

ELEMENTS AND SUB-OBJECTS

2D Element

PRE-COMUPUTATION

Precomputation is ascribed to the whole element, within its subparts (faces, edges and vertices)

 Ω_{ρ}

Shape functions

Lagrange elements

Source and receiver location

Determination of the $\xi-\eta$ coordinates:

Analytically for linear elem.s By *triangulation* for quad. el.

For the source:

$$\nabla \mathbf{w} : \mathbf{M}_0 \,\delta(\mathbf{x} - \mathbf{x}_0) \, d\Omega = \nabla \mathbf{w}(\mathbf{x}_0) : \mathbf{M}_0$$

SPACE DISCRETIZATION

Space discretization

$$\sum_{e} \int_{\Omega_{e}} \rho \, \mathbf{w}^{eh} \, \dot{\mathbf{v}}^{eh} J_{e} d\Box = \sum_{e_{source}} \xi_{\mathbf{x}} \nabla_{\xi} \, \mathbf{w}^{eh} : \mathbf{M}_{0} f(t) - \sum_{e} \int_{\Omega_{e}} \xi_{\mathbf{x}} \nabla_{\xi} \, \mathbf{w}^{eh} : \mathbf{c} : \nabla \mathbf{u}^{eh} J_{e} d\Box + \sum_{e} \int_{\Gamma \cap \partial \Omega_{e}} \mathbf{w}^{eh} \, \mathbf{T}^{\partial eh} J_{\partial e} d -$$

Numerical quadrature

• Gauss-Lobatto-Legendre (GLL) quadrature

$$\int_{-1}^{1} f(\zeta) d\zeta = \sum_{k=0}^{N} f(\zeta_k) \omega_k$$

• Lagrangian interpolation of fields on GLL points

$$\mathbf{M}\mathbf{\dot{v}} = \mathbf{F}^{ext} - \mathbf{F}^{int} (\mathbf{u}) + \mathbf{B}^T \mathbf{T}$$

$$\mathbf{F}^{\text{int}}(\mathbf{u}) = (\mathbf{K}\mathbf{u}) = \mathbf{D}_{\xi}^{T} \mathbf{a} \mathbf{D}_{\xi} \mathbf{u}$$

Diagonality of mass matrix leads to explicit schemes

Time discretization : Newmark velocity scheme

$$\mathbf{M} \frac{\mathbf{v}_{n+1} - \mathbf{v}_n}{\Delta t} = \mathbf{F}_{n+1/2}^{ext} - \mathbf{F}^{int} \left(\mathbf{u}_{n+1/2} \right) + \mathbf{B}^T \mathbf{T}_{n+1/2}$$
$$\mathbf{u}_{n+1/2} = \mathbf{u}_{n-1/2} + \Delta t \mathbf{v}_n$$

TIME STEPPING

Time stepping – Computation time is spent in

- Computation of derivatives Internal Forces
- Communication of internal forces between elements
- Upgrade of kinematic fields (One to one)

ORDERING OF THE POINTS

- Ordering of GLL plays an important role in the computation
- Tensorization requires the value of the displacement over all the element (boundaries included)

Special objects (s-o's), such as faults, Neumann conditions, Mortar interfaces and plane waves are introduced via the term

They are thought as a composition of objects of minor dimension

For the computation, s-o's need to know the IF from both media
S-o's give back the value of the traction, that has to be sommed to the partial IF computation

- MPI Communication requires the exchange of the IF between processors
- A special-object on the face of any subdomain collects IF from the bulk
- Asynchronous SEND-RECEIVE is performed for the interchanges

- 2DSPEC 3DSPEC is an object-decomposed code, with independent, different dimensions objects (internal elements, faces, edges, vertices)
- Derivative computation is perfomed at the element

level to take advantage from the tensorization

- Hierarchic communication is performed
- Flexibility results from the same procedure used to include faults, mortar interface, plane waves, parallelization

• Soon on the SPICE website

