2DSPEC - 3DSPEC Object decomposed Spectral Element Code

G. Festa, J.-P. Vilotte and E. Delavaud

The program development is supported by the SPICE EU-project

SPICE meeting
Munich
18-20 July 2005

SPECTRAL ELEMENTS

Weak formulation of elastodynamics

$$
\int_{\Omega} \rho \mathbf{w} \dot{\mathbf{v}} d \Omega=\int_{\Omega} \mathbf{w} \mathbf{f}^{e x t} d \Omega-\int_{\Omega} \nabla \mathbf{w}: \mathbf{c}: \nabla \mathbf{u} d \Omega+\int_{\Gamma} \mathbf{w} \mathbf{T} d \Gamma
$$

Ω elastic domain with :

$$
\begin{aligned}
& \Omega=\Omega_{1} \cup \Omega_{2} \\
& m\left(\Omega_{1} \cap \Omega_{2}\right)=0 \\
& \partial \Omega_{1} \cap \partial \Omega_{2}=\Gamma
\end{aligned}
$$

Гaccounts for a surface on which Neumann or Robin b.c. are imposed (fault, Mortar ...etc)

Quadrangulation of the domain

Shape function evaluation

Source and Receiver location

Time evolution

M

QUADRANGULATION

Separation of the domain in (quadrangluar) elements

$$
\sum_{e} \int_{\Omega_{e}} \rho \mathbf{w} \dot{\mathbf{v}} d \Omega=\sum_{e} \int_{\Omega_{e}} \mathbf{w} \mathbf{f}^{e x t} d \Omega-\sum_{e} \int_{\Omega_{e}} \nabla \mathbf{w}: \mathbf{c}: \nabla \mathbf{u} d \Omega+\sum_{e} \int_{\Gamma \cap \Omega_{e}} \mathbf{w} \mathbf{T} d \Gamma
$$

Complex domains are meshed by GiD http:// gid.cimne.upc.es

MESH PARTITIONING

Decomposition of the computational volume into subdomains

Partitioning graph software Metis and ParMetis
http:// www-
users.cs.umn.edu/~karypis/metis/

Any subdomain is the object of a processor
Computation is done at the level of the element
It enables different kinds of comunications

ELEMENTS AND SUB-OBJECTS

2D Element

PRE-COMUPUTATION

Precomputation is ascribed to the whole element, within its subparts (faces, edges and vertices)

Shape functions

Lagrange elements

Source and receiver location

For the source:

$$
\int_{\Omega_{e}} \nabla \mathbf{w}: \mathbf{M}_{0} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right) d \Omega=\nabla \mathbf{w}\left(\mathbf{x}_{0}\right): \mathbf{M}_{0}
$$

Space discretization

$$
\begin{aligned}
& \sum_{e} \int_{\Omega_{e}} \rho \mathbf{w}^{e h} \mathbf{v}^{e h} J_{e} d \square=\sum_{e_{e_{\text {sowee }}}} \xi_{\mathbf{x}} \nabla_{\xi} \mathbf{w}^{e h}: \mathbf{M}_{0} f(t)- \\
& \sum_{e} \int_{\Omega_{e}} \xi_{\mathbf{x}} \nabla_{\xi} \mathbf{w}^{e h}: \mathbf{c}: \nabla \mathbf{u}^{e h} J_{e} d \square+\sum_{e} \int_{\Gamma \cap \Omega_{e}} \mathbf{w}^{e h} \mathbf{T}^{\hat{\partial} h} J_{\partial e_{e}} d-
\end{aligned}
$$

Numerical quadrature

- Gauss-Lobatto-Legendre (GLL) quadrature

$$
\int_{-1}^{1} f(\zeta) d \zeta=\sum_{k=0}^{N} f\left(\zeta_{k}\right) \omega_{k}
$$

- Lagrangian interpolation of fields on GLL points

$$
\mathrm{M}) \dot{\mathbf{v}}=\mathbf{F}^{\text {ext }}-\mathbf{F}^{\mathrm{int}}(\mathbf{u})+\mathbf{B}^{T} \mathbf{T}
$$

$$
\mathbf{F}^{\mathrm{int}}(\mathbf{u})=(\mathbf{K u})=\mathbf{D}_{\xi}{ }^{T} \mathbf{a} \mathbf{D}_{\xi} \mathbf{u}
$$

Diagonality of mass matrix leads to explicit schemes

TIME STEPPING

Time discretization : Newmark velocity scheme

$$
\begin{aligned}
& \mathbf{M} \frac{\mathbf{v}_{n+1}-\mathbf{v}_{n}}{\Delta t}=\mathbf{F}_{n+1 / 2}^{e x t}-\mathbf{F}^{\mathrm{int}}\left(\mathbf{u}_{n+1 / 2}\right)+\mathbf{B}^{T} \mathbf{T}_{n+1 / 2} \\
& \mathbf{u}_{n+1 / 2}=\mathbf{u}_{n-1 / 2}+\Delta t \mathbf{v}_{n}
\end{aligned}
$$

$$
\left.\oint_{t_{n+1}}^{t_{n}}\right\}_{t_{n+1 / 2}} t_{n-1 / 2}
$$

Velocity

Time stepping - Computation time is spent in

- Computation of derivatives - Internal Forces
- Communication of internal forces between elements
- Upgrade of kinematic fields (One - to - one)

ORDERING OF THE POINTS

- Ordering of GLL plays an important role in the computation
- Tensorization requires the value of the displacement over all the element (boundaries included)

$$
\begin{aligned}
& \mathbf{D}_{1} u^{e}=D_{i p} u_{p j k}^{e} \\
& \mathbf{D}_{2} u^{e}=D_{i p} u_{i p k}^{e} \\
& \mathbf{D}_{3} u^{e}=D_{i p} p_{i p}^{e}
\end{aligned}
$$

DERIVATIVES

$$
\mathbf{D} \left\lvert\, \begin{array}{ccccc|}
\hline u_{000} & u_{010} & \cdots & \cdots & u_{0 N N} \\
u_{100} & u_{110} & \cdots & \cdots & u_{1 N N} \\
& & & & \vdots \\
u_{N 00} & u_{N 10} & \cdots & \cdots & u_{N N N} \\
\hline
\end{array}\right.
$$

$$
\mathbf{D}_{3} u^{e}=D_{i p} u_{i j p}^{e}
$$

$$
\mathbf{D}_{2} u^{e}=D_{i p} u_{i p k}^{e}
$$

UPGRADE

Special objects (s-o's), such as faults, Neumann conditions, Mortar interfaces and plane waves are introduced via the term

```
|w}\mathbf{T}d
```

They are thought as a composition of objects of minor dimension

- For the computation, s-o's need to know the IF from both media
- S-o's give back the value of the traction, that has to be sommed to the partial IF computation

PARALLELIZATION

- MPI Communication requires the exchange of the IF between processors
- A special-object on the face of any subdomain collects IF from the bulk
- Asynchronous SEND-RECEIVE is performed for the interchanges

CONCLUSIONS

- 2DSPEC - 3DSPEC is an object-decomposed code, with independent, different dimensions objects (internal elements, faces, edges, vertices)
- Derivative computation is perfomed at the element level to take advantage from the tensorization
- Hierarchic communication is performed
- Flexibility results from the same procedure used to include faults, mortar interface, plane waves, parallelization
- Soon on the SPICE website

